找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Defining Relations in Groups; A. Yu. Ol’shanskii Book 1991 Springer Science+Business Media Dordrecht 1991 Abelian group.Group

[復(fù)制鏈接]
樓主: CAP
31#
發(fā)表于 2025-3-26 22:57:35 | 只看該作者
32#
發(fā)表于 2025-3-27 03:01:12 | 只看該作者
33#
發(fā)表于 2025-3-27 08:23:29 | 只看該作者
Extensions of Aspherical Groups,If the quotient group ./. of a group . by a normal subgroup . is isomorphic to a group . then we say that . is an . of . by .. Such an extension is called . if . is an abelian group. If . is in the centre of ., then we say that the extension is ..
34#
發(fā)表于 2025-3-27 13:11:24 | 只看該作者
35#
發(fā)表于 2025-3-27 15:13:04 | 只看該作者
36#
發(fā)表于 2025-3-27 19:22:38 | 只看該作者
https://doi.org/10.1007/978-3-322-96725-1or diagrams over presentations of many groups which do not satisfy conventional conditions of the form .(.) on the amount of cancellation between relators. We shall also develop some necessary machinery, whose application yields results as early as the next chapter.
37#
發(fā)表于 2025-3-27 22:18:27 | 只看該作者
38#
發(fā)表于 2025-3-28 05:41:44 | 只看該作者
39#
發(fā)表于 2025-3-28 07:59:50 | 只看該作者
40#
發(fā)表于 2025-3-28 10:39:43 | 只看該作者
Presentations in Free Products,ing relations needed to define this quotient group. Lyndon [146], [149] formulated an analogue of van Kampen’s lemma for free products and applied it to small cancellation free products. In Chapter 11, we extend the method and the techniques of Chapters 4–10 to diagrams over free products and apply them to quotient groups of free products.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
图木舒克市| 称多县| 雅安市| 蒙山县| 沁源县| 富阳市| 德清县| 北宁市| 恭城| 保康县| 江山市| 彭阳县| 彭山县| 阳城县| 习水县| 禹城市| 马尔康县| 高州市| 体育| 德兴市| 陇川县| 桦南县| 会理县| 玛曲县| 康平县| 遂川县| 新兴县| 临泽县| 鄂托克前旗| 广丰县| 贵州省| 分宜县| 江油市| 潞西市| 马公市| 镇江市| 山东省| 奉化市| 永济市| 宁波市| 大洼县|