找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Defining Relations in Groups; A. Yu. Ol’shanskii Book 1991 Springer Science+Business Media Dordrecht 1991 Abelian group.Group

[復制鏈接]
樓主: CAP
21#
發(fā)表于 2025-3-25 05:45:11 | 只看該作者
0169-6378 Overview: 978-94-010-5605-2978-94-011-3618-1Series ISSN 0169-6378
22#
發(fā)表于 2025-3-25 08:52:04 | 只看該作者
23#
發(fā)表于 2025-3-25 15:18:02 | 只看該作者
https://doi.org/10.1007/978-3-663-05970-7r on all pairs of elements (that all proper subgroups are cyclic or that certain identities in two variables hold, as in Chapter 9). In this the final chapter, we consider another type of universal restriction on the elements of a group, namely, the conjugacy of any pair of elements satisfying certain natural conditions.
24#
發(fā)表于 2025-3-25 16:52:16 | 只看該作者
Partitions of Relators,ns of groups of a certain specific type. The partitions of the boundaries of cells are induced by natural decompositions of relators. In this chapter we study basic properties of presentations of this kind and, in Chapter 9, we find explicit forms of relators depending on the group-theoretic problem under consideration.
25#
發(fā)表于 2025-3-25 23:18:46 | 只看該作者
Conjugacy Relations,r on all pairs of elements (that all proper subgroups are cyclic or that certain identities in two variables hold, as in Chapter 9). In this the final chapter, we consider another type of universal restriction on the elements of a group, namely, the conjugacy of any pair of elements satisfying certain natural conditions.
26#
發(fā)表于 2025-3-26 00:34:38 | 只看該作者
27#
發(fā)表于 2025-3-26 08:01:23 | 只看該作者
28#
發(fā)表于 2025-3-26 09:23:47 | 只看該作者
,Einführung in das digitale Zeitalter,In §7 we considerednatural finiteness conditions which arose in the process of imposing on infinite abstract groups characteristic properties of finite groups.
29#
發(fā)表于 2025-3-26 15:47:24 | 只看該作者
30#
發(fā)表于 2025-3-26 20:30:22 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 13:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大姚县| 东明县| 固阳县| 海原县| 独山县| 缙云县| 合江县| 屯门区| 即墨市| 资阳市| 崇明县| 闽侯县| 无极县| 安吉县| 靖远县| 长葛市| 织金县| 张家界市| 沐川县| 缙云县| 治县。| 乐平市| 淮阳县| 永清县| 邹平县| 罗甸县| 东城区| 郴州市| 灵宝市| 微博| 于都县| 方正县| 高要市| 龙海市| 喀喇沁旗| 新野县| 巢湖市| 新丰县| 金堂县| 张北县| 林口县|