找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Defining Relations in Groups; A. Yu. Ol’shanskii Book 1991 Springer Science+Business Media Dordrecht 1991 Abelian group.Group

[復(fù)制鏈接]
樓主: CAP
21#
發(fā)表于 2025-3-25 05:45:11 | 只看該作者
0169-6378 Overview: 978-94-010-5605-2978-94-011-3618-1Series ISSN 0169-6378
22#
發(fā)表于 2025-3-25 08:52:04 | 只看該作者
23#
發(fā)表于 2025-3-25 15:18:02 | 只看該作者
https://doi.org/10.1007/978-3-663-05970-7r on all pairs of elements (that all proper subgroups are cyclic or that certain identities in two variables hold, as in Chapter 9). In this the final chapter, we consider another type of universal restriction on the elements of a group, namely, the conjugacy of any pair of elements satisfying certain natural conditions.
24#
發(fā)表于 2025-3-25 16:52:16 | 只看該作者
Partitions of Relators,ns of groups of a certain specific type. The partitions of the boundaries of cells are induced by natural decompositions of relators. In this chapter we study basic properties of presentations of this kind and, in Chapter 9, we find explicit forms of relators depending on the group-theoretic problem under consideration.
25#
發(fā)表于 2025-3-25 23:18:46 | 只看該作者
Conjugacy Relations,r on all pairs of elements (that all proper subgroups are cyclic or that certain identities in two variables hold, as in Chapter 9). In this the final chapter, we consider another type of universal restriction on the elements of a group, namely, the conjugacy of any pair of elements satisfying certain natural conditions.
26#
發(fā)表于 2025-3-26 00:34:38 | 只看該作者
27#
發(fā)表于 2025-3-26 08:01:23 | 只看該作者
28#
發(fā)表于 2025-3-26 09:23:47 | 只看該作者
,Einführung in das digitale Zeitalter,In §7 we considerednatural finiteness conditions which arose in the process of imposing on infinite abstract groups characteristic properties of finite groups.
29#
發(fā)表于 2025-3-26 15:47:24 | 只看該作者
30#
發(fā)表于 2025-3-26 20:30:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武定县| 天门市| 盖州市| 红安县| 邵武市| 和政县| 武安市| 孟州市| 扶风县| 泗洪县| 新乡市| 临潭县| 杭锦旗| 周至县| 抚远县| 南开区| 城口县| 凤山市| 穆棱市| 武威市| 公主岭市| 安多县| 出国| 垫江县| 承德县| 华蓥市| 元朗区| 罗田县| 泰宁县| 封开县| 轮台县| 铜山县| 哈密市| 杨浦区| 尚义县| 巴塘县| 云梦县| 普兰店市| 柞水县| 化德县| 色达县|