找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Control Theory and Sub-Riemannian Geometry; Gianna Stefani,Ugo Boscain,Mario Sigalotti Book 2014 Springer International Publishi

[復(fù)制鏈接]
樓主: Nixon
41#
發(fā)表于 2025-3-28 16:14:45 | 只看該作者
42#
發(fā)表于 2025-3-28 21:38:49 | 只看該作者
43#
發(fā)表于 2025-3-29 00:17:05 | 只看該作者
44#
發(fā)表于 2025-3-29 05:29:51 | 只看該作者
Optimal stationary exploitation of size-structured population with intra-specific competition,We analyze an exploitation of size-structured population in stationary mode and prove the existence of stationary state of population for a given stationary control. The existence of an optimal control is proved and the necessary optimal condition is found.
45#
發(fā)表于 2025-3-29 10:06:35 | 只看該作者
Remarks on Lipschitz domains in Carnot groups,In this Note we present the basic features of the theory of Lipschitz maps within Carnot groups as it is developed in [.], and we prove that intrinsic Lipschitz domains in Carnot groups are uniform domains.
46#
發(fā)表于 2025-3-29 15:29:29 | 只看該作者
47#
發(fā)表于 2025-3-29 19:11:48 | 只看該作者
48#
發(fā)表于 2025-3-29 19:56:21 | 只看該作者
,On Local Approximation Theorem on Equiregular Carnot-Carathéodory Spaces,We prove the Local Approximation Theorem on equiregular Carnot-Carathéodory spaces with ..-smooth basis vector fields.
49#
發(fā)表于 2025-3-30 02:45:23 | 只看該作者
50#
發(fā)表于 2025-3-30 08:07:21 | 只看該作者
On the injectivity and nonfocal domains of the ellipsoid of revolution,omains is investigated on the ellipsoid of revolution. Building upon previous results [., .], both the oblate and prolate cases are addressed. Preliminary numerical estimates are given in the prolate situation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平和县| 神农架林区| 思南县| 寿阳县| 西藏| 集贤县| 宾川县| 大理市| 潞城市| 额敏县| 惠东县| 通州区| 嘉黎县| 孟州市| 全椒县| 城市| 郯城县| 阿克苏市| 新龙县| 贺兰县| 江陵县| 福贡县| 修文县| 静乐县| 武穴市| 古蔺县| 吴堡县| 深水埗区| 石河子市| 民和| 昌宁县| 吴旗县| 河北区| 四平市| 周口市| 盈江县| 灌阳县| 始兴县| 县级市| 宣汉县| 云安县|