找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Functions and Fourier Analysis; Dedicated to Stevan Michael Oberguggenberger,Joachim Toft,Patrik Wahlb Book 2017 Springer Inte

[復制鏈接]
樓主: 人工合成
31#
發(fā)表于 2025-3-26 21:01:55 | 只看該作者
An Observation of the Subspaces of ,,polynomials. The proof is a combination of the fact in the textbook by Treves and the well-known bipolar theorem. In this paper by extending slightly the idea employed in [5], we give an alternative proof of this fact and then we extend this proposition so that we can include some related function spaces.
32#
發(fā)表于 2025-3-27 03:23:11 | 只看該作者
33#
發(fā)表于 2025-3-27 07:44:58 | 只看該作者
,Eigenvalue Problems of Toeplitz Operators in Bargmann–Fock Spaces,rify the relationship between Toeplitz operators in Bargmann–Fock spaces and Daubechies operators in L.(?.). As application of our results, we will give a new proof of the formula of the eigenvalues of Daubechies operators with polyradial symbols.
34#
發(fā)表于 2025-3-27 10:09:43 | 只看該作者
35#
發(fā)表于 2025-3-27 14:07:41 | 只看該作者
0255-0156 o-Differential Operators (IGPDO) and on Generalized Functions (IGGF), notably on the longstanding collaboration of these groups within ISAAC..978-3-319-84776-4978-3-319-51911-1Series ISSN 0255-0156 Series E-ISSN 2296-4878
36#
發(fā)表于 2025-3-27 20:17:07 | 只看該作者
37#
發(fā)表于 2025-3-27 23:09:56 | 只看該作者
The Dynamic Wind-Pollinated Mating Systemcretely layered media are shown to converge to limits as the time step goes to zero (almost surely pointwise almost everywhere). This translates into limits in the Fourier integral operator representations.
38#
發(fā)表于 2025-3-28 05:45:53 | 只看該作者
Transport in a Stochastic Goupillaud Medium,cretely layered media are shown to converge to limits as the time step goes to zero (almost surely pointwise almost everywhere). This translates into limits in the Fourier integral operator representations.
39#
發(fā)表于 2025-3-28 08:58:21 | 只看該作者
40#
發(fā)表于 2025-3-28 14:29:17 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 23:15
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
特克斯县| 巴南区| 高安市| 大洼县| 镇江市| 新绛县| 视频| 嘉义市| 三原县| 长沙县| 璧山县| 修武县| 教育| 林州市| 古浪县| 五莲县| 景宁| 嘉禾县| 寻甸| 卢龙县| 玉山县| 子洲县| 临清市| 夏河县| 雅安市| 临猗县| 宿松县| 广元市| 大关县| 大宁县| 那曲县| 新邵县| 墨竹工卡县| 铜山县| 海门市| 无为县| 封开县| 临沧市| 南充市| 岳阳县| 威信县|