找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Functions and Fourier Analysis; Dedicated to Stevan Michael Oberguggenberger,Joachim Toft,Patrik Wahlb Book 2017 Springer Inte

[復制鏈接]
樓主: 人工合成
11#
發(fā)表于 2025-3-23 09:54:39 | 只看該作者
Axel Bichler,Volker Trommsdorffprincipal symbol being a symbol of principal type near some characteristic point (i.e., vanishing at a part of the characteristic set). We prove (micro)local non-solvability results as well as subelliptic estimates in the second case when the loss of regularity is of the following type: .. For the o
12#
發(fā)表于 2025-3-23 14:33:00 | 只看該作者
polynomials. The proof is a combination of the fact in the textbook by Treves and the well-known bipolar theorem. In this paper by extending slightly the idea employed in [5], we give an alternative proof of this fact and then we extend this proposition so that we can include some related function s
13#
發(fā)表于 2025-3-23 18:43:15 | 只看該作者
14#
發(fā)表于 2025-3-23 23:34:05 | 只看該作者
G. Zerbi,M. Gussoni,C. Castiglioniarameterized by real numbers. We show that continuity properties in the framework of modulation space theory, valid for the Shubin’s family extend to the broader matrix parameterized family of pseudo-differential calculi.
15#
發(fā)表于 2025-3-24 05:47:37 | 只看該作者
Oliver Gassmann,Fabrizio Ferrandinarify the relationship between Toeplitz operators in Bargmann–Fock spaces and Daubechies operators in L.(?.). As application of our results, we will give a new proof of the formula of the eigenvalues of Daubechies operators with polyradial symbols.
16#
發(fā)表于 2025-3-24 08:06:38 | 只看該作者
17#
發(fā)表于 2025-3-24 11:34:48 | 只看該作者
Michael Oberguggenberger,Joachim Toft,Patrik WahlbGives and up-to-date overview on the convergence and joint progress of Generalized Functions and Fourier Analysis.Joint collaboration of IAGF, IGPDO and IGGF.Dedicated to Prof. Stevan Pilipovic
18#
發(fā)表于 2025-3-24 18:49:51 | 只看該作者
Coniferen im Westlichen Malayischen ArchipelWe consider quasi-Banach spaces that lie between a Gelfand–Shilov space, or more generally, Pilipovi′c space, ., and its dual, . . We prove that for such quasi-Banach space ., there are convenient Hilbert spaces, ., with normalized Hermite functions as orthonormal bases and such that . lies between ., and the latter spaces lie between ..
19#
發(fā)表于 2025-3-24 23:02:36 | 只看該作者
20#
發(fā)表于 2025-3-25 00:29:12 | 只看該作者
https://doi.org/10.1057/9781137492975We prove that an ultradistribution is rotation invariant if and only if it coincides with its spherical mean. For it, we study the problem of spherical representations of ultradistributions on ?.. Our results apply to both the quasianalytic and the non-quasianalytic case.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 21:12
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平阴县| 枣阳市| 剑川县| 泰州市| 濉溪县| 扎囊县| 塘沽区| 长葛市| 合川市| 望城县| 铁岭市| 卢龙县| 咸宁市| 安庆市| 洛扎县| 抚州市| 巴楚县| 横山县| 北安市| 个旧市| 仙游县| 咸阳市| 兴化市| 光泽县| 亚东县| 鹿泉市| 濮阳市| 板桥市| 马鞍山市| 浦城县| 仁寿县| 贺兰县| 平舆县| 富宁县| 修文县| 奎屯市| 来安县| 安平县| 衡水市| 翁牛特旗| 老河口市|