找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Curvatures; Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni

[復制鏈接]
樓主: Harrison
31#
發(fā)表于 2025-3-27 00:47:20 | 只看該作者
Currentsrt introduction to this subject. We end this chapter with important theorems used in the approximation and convergence results proved in the succeeding parts of the book. A nice introduction to this subject can be found in [63].
32#
發(fā)表于 2025-3-27 03:29:20 | 只看該作者
Jean-Marie MorvanFirst coherent and complete account of this subject in book form
33#
發(fā)表于 2025-3-27 05:24:42 | 只看該作者
https://doi.org/10.1007/978-1-4612-4772-2Our goal in this chapter is to point out the difficulties arising when one evaluates the area and the curvatures of a surface by approximation.
34#
發(fā)表于 2025-3-27 10:29:56 | 只看該作者
K. E. Kürten,M. L. Ristig,J. W. ClarkThere is an abundant literature on convexity, crucial in many fields of mathematics. We shall mention the basic definitions and some fundamental results (without proof), useful for our topic. In particular, we shall focus on the properties of the volume of a convex body and its boundary. The reader can consult [9, 71, 74, 79] for details.
35#
發(fā)表于 2025-3-27 17:06:58 | 只看該作者
36#
發(fā)表于 2025-3-27 18:12:54 | 只看該作者
J. N. Herrera,L. Blum,Fernando VericatLet us introduce the concept of . on a .-manifold . of dimension . with or without boundary ?. (.≥1,.≥2). The goal is to use suitable differential forms to construct measures, with which one can define the notion of ., fundamental in our context. Chapter 3 of [11] gives a complete introduction to the subject.
37#
發(fā)表于 2025-3-28 00:03:28 | 只看該作者
Situation, Jetztsein, Psychose,We have seen in Chap. 13 that the length of a curve is classically defined as the supremum of the lengths of polygonal lines inscribed in it. Our purpose here is to compare the length of a given smooth curve with the length of a curve close to it, or more precisely with the length of a polygonal line inscribed in it.
38#
發(fā)表于 2025-3-28 04:07:52 | 只看該作者
39#
發(fā)表于 2025-3-28 07:20:44 | 只看該作者
Hédi Hamdi,Charfeddine Mrad,Rachid NasriIn previous chapters, we have seen that it is possible to define . which describe the global shape of two classes of subsets of E., namely the convex bodies and the smooth submanifolds. A good challenge is to find larger classes of subsets on which a more general theory holds. In 1958, Federer [43] made a major advance in two directions:
40#
發(fā)表于 2025-3-28 13:19:28 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 17:26
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
武平县| 灵川县| 汨罗市| 安泽县| 贵溪市| 五原县| 金堂县| 家居| 宜阳县| 达拉特旗| 布尔津县| 德州市| 额济纳旗| 丹凤县| 合肥市| 敦煌市| 沭阳县| 凯里市| 石家庄市| 夏津县| 淳化县| 长海县| 宁明县| 马边| 治县。| 湟中县| 牙克石市| 樟树市| 广安市| 海原县| 交口县| 萝北县| 武隆县| 昌宁县| 杂多县| 湾仔区| 馆陶县| 方山县| 吴江市| 哈尔滨市| 北碚区|