找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Curvatures; Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni

[復(fù)制鏈接]
樓主: Harrison
21#
發(fā)表于 2025-3-25 05:42:33 | 只看該作者
Stefan M. Duma Ph.D.,Steven Rowson Ph.D. a circle is geometric for . but not for ., while the property of being a conic or a straight line is geometric for both . and .. This point of view may be generalized to any subset . of any vector space . endowed with a group . acting on it..In this book, we only consider the group of rigid motions
22#
發(fā)表于 2025-3-25 10:16:28 | 只看該作者
M. A. Rao,D. A. Rao,K. R. D. Royevaluation of these curvatures cannot be done by differentiations of a parametrization of the boundary, because of the lack of differentiability. We shall directly evaluate them for convex polyhedra. All these techniques will be generalized in the next chapters to objects which are not convex, but w
23#
發(fā)表于 2025-3-25 15:37:34 | 只看該作者
https://doi.org/10.1007/978-3-540-73792-6Gaussian curvature; Riemannian geometry; Riemannian manifold; computational geometry; computer graphics;
24#
發(fā)表于 2025-3-25 17:53:13 | 只看該作者
978-3-642-09300-5Springer-Verlag Berlin Heidelberg 2008
25#
發(fā)表于 2025-3-25 20:58:59 | 只看該作者
26#
發(fā)表于 2025-3-26 03:43:56 | 只看該作者
27#
發(fā)表于 2025-3-26 07:16:29 | 只看該作者
28#
發(fā)表于 2025-3-26 09:02:50 | 只看該作者
29#
發(fā)表于 2025-3-26 16:28:13 | 只看該作者
30#
發(fā)表于 2025-3-26 17:43:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
叙永县| 英吉沙县| 会宁县| 海安县| 新竹市| 阿鲁科尔沁旗| 北川| 庆阳市| 三明市| 称多县| 翼城县| 嘉定区| 桃源县| 台安县| 大同市| 安陆市| 福州市| 涿州市| 上思县| 托克托县| 甘谷县| 徐汇区| 阿合奇县| 循化| 辛集市| 嘉义县| 荣昌县| 且末县| 洱源县| 浦东新区| 铜山县| 华蓥市| 鹤山市| 江华| 红原县| 同德县| 和顺县| 楚雄市| 施甸县| 来凤县| 富顺县|