找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Integrals and Elliptic Functions; Takashi Takebe Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復制鏈接]
樓主: purulent
21#
發(fā)表于 2025-3-25 04:47:26 | 只看該作者
,über die Weierstra?sche ? — Funktion,How many kinds of domains are there in a plane? Here by the word ‘domain’ we mean a connected open set (or, equivalently, an arcwise-connected open set).
22#
發(fā)表于 2025-3-25 10:39:53 | 只看該作者
23#
發(fā)表于 2025-3-25 15:23:29 | 只看該作者
24#
發(fā)表于 2025-3-25 17:25:52 | 只看該作者
25#
發(fā)表于 2025-3-25 21:34:42 | 只看該作者
,Analysis: Ma? und Integration,In the previous chapter we proved that rational functions, rational functions of an exponential function and elliptic functions have addition theorems (algebraic addition formulae). Are there other functions which have algebraic addition formulae? The next Weierstrass–Phragmén theorem1 answers this question.
26#
發(fā)表于 2025-3-26 03:33:50 | 只看該作者
Introduction,In this chapter, apart from establishing rigorous definitions and logic, we will survey the various themes in the main part of the book to get an overview of the theory.We also pick up several topics which we shall not deal with later, in order to show the breadth and depth of the theory of elliptic functions.
27#
發(fā)表于 2025-3-26 04:45:40 | 只看該作者
The Arc Length of CurvesAs a matter of fact, this is nothing more than a paraphrase of the definition of 𝜋: ‘The number 𝜋 is the ratio of a circle’s circumference to its diameter’. However, if you pursue logical rigour, there are many gaps to be filled.
28#
發(fā)表于 2025-3-26 09:13:24 | 只看該作者
Classification of Elliptic IntegralsIt is natural to call the former an . integral, but why call the latter ‘elliptic’, even though the curve is not an ellipse? In fact, today the word ‘elliptic integral’ is a general term used in the following sense.
29#
發(fā)表于 2025-3-26 16:38:33 | 只看該作者
30#
發(fā)表于 2025-3-26 18:45:33 | 只看該作者
Jacobi’s Elliptic Functions on In this chapter we introduce elliptic functions as inverse functions of elliptic integrals..We use several convergence theorems in real analysis, which we cite in Appendix A.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大城县| 介休市| 宁陕县| 焦作市| 安庆市| 丰都县| 斗六市| 贵德县| 三都| 阳西县| 嘉鱼县| 家居| 澳门| 永修县| 嘉鱼县| 泽库县| 清流县| 罗城| 二连浩特市| 玉门市| 洪雅县| 东明县| 宁河县| 叙永县| 宣汉县| 瑞昌市| 炉霍县| 织金县| 图们市| 石嘴山市| 浙江省| 乌鲁木齐市| 卓尼县| 湖口县| 尼木县| 延边| 团风县| 通海县| 突泉县| 沈阳市| 五原县|