找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Integrals and Elliptic Functions; Takashi Takebe Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
樓主: purulent
11#
發(fā)表于 2025-3-23 10:46:50 | 只看該作者
Theta Functions imposing both conditions, ‘doubly periodic’ and ‘holomorphic’, is too restrictive. When the condition ‘holomorphic’ is replaced by ‘meromorphic’, the fruitful theory of elliptic functions is developed, as we saw. In this chapter we loosen the condition ‘doubly periodic’.
12#
發(fā)表于 2025-3-23 14:29:48 | 只看該作者
13#
發(fā)表于 2025-3-23 21:53:11 | 只看該作者
14#
發(fā)表于 2025-3-23 22:53:39 | 只看該作者
15#
發(fā)表于 2025-3-24 06:05:31 | 只看該作者
https://doi.org/10.1007/978-3-8274-2853-0It is natural to call the former an . integral, but why call the latter ‘elliptic’, even though the curve is not an ellipse? In fact, today the word ‘elliptic integral’ is a general term used in the following sense.
16#
發(fā)表于 2025-3-24 08:10:14 | 只看該作者
Ein Spielzeug mit GruppenstrukturIn this chapter, we are going to see how elliptic integrals are applied in mathematics and physics. Good mathematical objects appear in many situations.
17#
發(fā)表于 2025-3-24 12:38:53 | 只看該作者
18#
發(fā)表于 2025-3-24 15:35:59 | 只看該作者
Brennstoffe und ihre technische Verwendung,In the previous chapter we defined Jacobi’s elliptic function sn as the inverse function of the incomplete elliptic integral of the first kind, introduced cn and dn and studied their properties. These Jacobi’s elliptic functions appear in various problems, from which we pick up two applications to physics in this chapter.
19#
發(fā)表于 2025-3-24 19:23:00 | 只看該作者
20#
發(fā)表于 2025-3-25 02:20:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永州市| 广灵县| 固镇县| 防城港市| 昭平县| 花垣县| 类乌齐县| 宕昌县| 元氏县| 平定县| 黔江区| 凉城县| 克东县| 紫云| 通城县| 承德市| 四川省| 三明市| 思茅市| 扎兰屯市| 关岭| 大埔区| 鄱阳县| 石林| 亳州市| 绥德县| 天津市| 德安县| 双桥区| 皮山县| 乌拉特后旗| 南平市| 阆中市| 成安县| 清徐县| 城市| 望城县| 洞口县| 宝丰县| 慈利县| 思茅市|