找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Integrals and Elliptic Functions; Takashi Takebe Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
樓主: purulent
11#
發(fā)表于 2025-3-23 10:46:50 | 只看該作者
Theta Functions imposing both conditions, ‘doubly periodic’ and ‘holomorphic’, is too restrictive. When the condition ‘holomorphic’ is replaced by ‘meromorphic’, the fruitful theory of elliptic functions is developed, as we saw. In this chapter we loosen the condition ‘doubly periodic’.
12#
發(fā)表于 2025-3-23 14:29:48 | 只看該作者
13#
發(fā)表于 2025-3-23 21:53:11 | 只看該作者
14#
發(fā)表于 2025-3-23 22:53:39 | 只看該作者
15#
發(fā)表于 2025-3-24 06:05:31 | 只看該作者
https://doi.org/10.1007/978-3-8274-2853-0It is natural to call the former an . integral, but why call the latter ‘elliptic’, even though the curve is not an ellipse? In fact, today the word ‘elliptic integral’ is a general term used in the following sense.
16#
發(fā)表于 2025-3-24 08:10:14 | 只看該作者
Ein Spielzeug mit GruppenstrukturIn this chapter, we are going to see how elliptic integrals are applied in mathematics and physics. Good mathematical objects appear in many situations.
17#
發(fā)表于 2025-3-24 12:38:53 | 只看該作者
18#
發(fā)表于 2025-3-24 15:35:59 | 只看該作者
Brennstoffe und ihre technische Verwendung,In the previous chapter we defined Jacobi’s elliptic function sn as the inverse function of the incomplete elliptic integral of the first kind, introduced cn and dn and studied their properties. These Jacobi’s elliptic functions appear in various problems, from which we pick up two applications to physics in this chapter.
19#
發(fā)表于 2025-3-24 19:23:00 | 只看該作者
20#
發(fā)表于 2025-3-25 02:20:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐市| 阿勒泰市| 仁布县| 大关县| 沧州市| 黎平县| 马公市| 阳西县| 申扎县| 宜黄县| 丽水市| 绿春县| 启东市| 延边| 潢川县| 辽阳市| 安陆市| 泽普县| 泉州市| 射洪县| 徐汇区| 大埔县| 中超| 朝阳市| 金乡县| 措美县| 张掖市| 长海县| 丹阳市| 囊谦县| 邢台市| 阿拉善盟| 芮城县| 分宜县| 太康县| 丹江口市| 叙永县| 瓮安县| 重庆市| 沾益县| 庆云县|