找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Number Theory; John Stillwell Textbook 2003 Springer Science+Business Media New York 2003 Euclidean algorithm.number theory.pr

[復(fù)制鏈接]
樓主: Localized
11#
發(fā)表于 2025-3-23 12:02:49 | 只看該作者
Management von NetzwerkorganisationenFermat’s remarkable discovery that odd primes of the . form . +. are in fact those of the . form 4.+ 1 led to the more general problem of describing primes of the form .+ . for nonsquare integers .. Is it true, for each ., that the primes of the form . + . are those of a finite number of linear forms?
12#
發(fā)表于 2025-3-23 16:13:20 | 只看該作者
Management von Open-Innovation-NetzwerkenThis chapter unites many of the algebraic structures encountered in this book—the integers, the integers mod ., and the various extensions of the integer concept by Gauss, Eisenstein and Hurwitz—in the single abstract concept of ..
13#
發(fā)表于 2025-3-23 18:53:43 | 只看該作者
Definition des Plattformkonzepts,This chapter pursues the idea that a number is known by the set of its multiples, so an “ideal number” is known by a set that . a set of multiples. Such a set . in a ring . is called an ideal, and it is defined by closure under sums (. ∈ . ? . + . ∈ .) and under multiplication by all elements of the ring (. ∈ ., . ∈ . ? . ∈ .).
14#
發(fā)表于 2025-3-24 01:36:38 | 只看該作者
15#
發(fā)表于 2025-3-24 04:01:49 | 只看該作者
16#
發(fā)表于 2025-3-24 09:45:35 | 只看該作者
Congruence arithmetic,Many questions in arithmetic reduce to questions about remainders that can be answered in a systematic manner. For each integer . >1 there is an arithmetic “mod .” that mirrors ordinary arithmetic but is ., since it involves only the . remainders 0, 1, 2,..., .-1 occurring on division by .. Arithmetic mod ., or ., is the subject of this chapter.
17#
發(fā)表于 2025-3-24 13:59:36 | 只看該作者
18#
發(fā)表于 2025-3-24 17:17:34 | 只看該作者
Quadratic integers,Just as Gaussian integers enable the factorization of x. + ., other quadratic expressions in ordinary integer variables are factorized with the help of .. Examples in this chapter are ..
19#
發(fā)表于 2025-3-24 21:32:48 | 只看該作者
20#
發(fā)表于 2025-3-24 23:21:45 | 只看該作者
Quadratic reciprocity,Fermat’s remarkable discovery that odd primes of the . form . +. are in fact those of the . form 4.+ 1 led to the more general problem of describing primes of the form .+ . for nonsquare integers .. Is it true, for each ., that the primes of the form . + . are those of a finite number of linear forms?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻城市| 普定县| 鄄城县| 惠来县| 子洲县| 桐城市| 房山区| 科技| 漳平市| 高雄县| 晋中市| 郁南县| 旌德县| 西吉县| 棋牌| 东丰县| 秭归县| 庐江县| 丹东市| 班玛县| 凭祥市| 德钦县| 赤壁市| 江孜县| 新龙县| 永福县| 康乐县| 雅江县| 莆田市| 印江| 紫金县| 巩义市| 松滋市| 宁南县| 德庆县| 新建县| 聂拉木县| 株洲市| 内乡县| 怀化市| 万年县|