找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Number Theory; John Stillwell Textbook 2003 Springer Science+Business Media New York 2003 Euclidean algorithm.number theory.pr

[復(fù)制鏈接]
樓主: Localized
21#
發(fā)表于 2025-3-25 06:09:54 | 只看該作者
22#
發(fā)表于 2025-3-25 09:43:50 | 只看該作者
Ideals,This chapter pursues the idea that a number is known by the set of its multiples, so an “ideal number” is known by a set that . a set of multiples. Such a set . in a ring . is called an ideal, and it is defined by closure under sums (. ∈ . ? . + . ∈ .) and under multiplication by all elements of the ring (. ∈ ., . ∈ . ? . ∈ .).
23#
發(fā)表于 2025-3-25 14:05:29 | 只看該作者
24#
發(fā)表于 2025-3-25 18:05:00 | 只看該作者
Bankenaufsichtsrechtliche Bestimmungene way, why 1 is . regarded as a prime—nothing is built from products of 1 except 1 itself). But even if primes are the building blocks, it is not easy to grasp them directly. There is no simple way to test whether a given natural number is prime, nor to find the smallest prime divisor of a given number.
25#
發(fā)表于 2025-3-25 21:16:37 | 只看該作者
26#
發(fā)表于 2025-3-26 03:25:04 | 只看該作者
27#
發(fā)表于 2025-3-26 04:26:36 | 只看該作者
28#
發(fā)表于 2025-3-26 09:45:06 | 只看該作者
The Pell equation,ratic Diophantine equations. The Greeks studied the special case . ? 2. = 1 because they realized that its natural number solutions throw light on the nature of .. There is a similar connection between the natural number solutions of . ? . = 1 and . when . is any nonsquare natural number.
29#
發(fā)表于 2025-3-26 14:32:41 | 只看該作者
30#
發(fā)表于 2025-3-26 20:42:50 | 只看該作者
978-1-4419-3066-8Springer Science+Business Media New York 2003
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天祝| 河池市| 河南省| 德惠市| 双柏县| 梨树县| 合江县| 闻喜县| 荣成市| 襄汾县| 商都县| 绥化市| 洪江市| 麻江县| 施秉县| 张北县| 通道| 宁国市| 广安市| 龙川县| 丰顺县| 花莲县| 易门县| 宜丰县| 城口县| 花垣县| 綦江县| 德安县| 博客| 彝良县| 项城市| 西充县| 宝丰县| 阆中市| 灵石县| 连平县| 石家庄市| 桑植县| 东台市| 龙山县| 屏边|