找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Electronic Nose: Algorithmic Challenges; Lei Zhang,Fengchun Tian,David Zhang Book 2018 Springer Nature Singapore Pte Ltd. 2018 Electronic

[復制鏈接]
樓主: injurious
41#
發(fā)表于 2025-3-28 18:30:06 | 只看該作者
42#
發(fā)表于 2025-3-28 21:17:18 | 只看該作者
Other inorganic electrolytic processes, constructed for correction. Finally, an effective signal correction method was employed for E-nose data. Experimental results in the real case-studies demonstrate the effectiveness of the presented model in E-nose based on MOS gas sensors array.
43#
發(fā)表于 2025-3-28 23:40:35 | 只看該作者
44#
發(fā)表于 2025-3-29 07:04:36 | 只看該作者
45#
發(fā)表于 2025-3-29 08:44:48 | 只看該作者
Domain Adaptation Guided Drift Compensationin classifier with drift compensation. Experiments on the popular sensor drift data of multiple batches clearly demonstrate that the proposed DAELM significantly outperforms existing drift compensation methods.
46#
發(fā)表于 2025-3-29 11:38:32 | 只看該作者
Domain Regularized Subspace Projection Method and anti-drift is manifested with a well-solved projection matrix in real application. Experiments on synthetic data and real datasets demonstrate the effectiveness and efficiency of the proposed anti-drift method in comparison to state-of-the-art methods.
47#
發(fā)表于 2025-3-29 16:00:30 | 只看該作者
Pattern Recognition-Based Interference Reduction constructed for correction. Finally, an effective signal correction method was employed for E-nose data. Experimental results in the real case-studies demonstrate the effectiveness of the presented model in E-nose based on MOS gas sensors array.
48#
發(fā)表于 2025-3-29 22:58:03 | 只看該作者
Introductionduring the past two decades. Then, we propose to address these key challenges in E-nose, which are sensor induced and sensor specific. This chapter is closed by a statement of the objective of the research, a brief summary of the work, and a general outline of the overall structure of this book.
49#
發(fā)表于 2025-3-30 03:10:04 | 只看該作者
50#
發(fā)表于 2025-3-30 04:33:53 | 只看該作者
Heuristic and Bio-inspired Neural Network Model using a multi-sensor system. The estimation accuracy in actual application is concerned too much by manufacturers and researchers. This chapter analyzes the application of different bio-inspired and heuristic techniques to improve the concentration estimation in experimental electronic nose applica
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 06:27
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南漳县| 吉木萨尔县| 贵阳市| 湘乡市| 大名县| 腾冲县| 神池县| 五大连池市| 崇信县| 炎陵县| 灌云县| 东港市| 霍城县| 桂平市| 梁河县| 青浦区| 甘洛县| 唐山市| 泰顺县| 辽阳县| 黄平县| 弥渡县| 綦江县| 金塔县| 马龙县| 屯留县| 旬邑县| 龙游县| 淮阳县| 兴仁县| 文昌市| 兴和县| 岫岩| 龙海市| 南华县| 雷州市| 喀喇| 山西省| 若羌县| 兴隆县| 宁武县|