找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Electronic Nose: Algorithmic Challenges; Lei Zhang,Fengchun Tian,David Zhang Book 2018 Springer Nature Singapore Pte Ltd. 2018 Electronic

[復制鏈接]
樓主: injurious
21#
發(fā)表于 2025-3-25 05:00:37 | 只看該作者
Other inorganic electrolytic processes,pecificity and stability of electronic nose in practical application. This chapter presents an on-line counteraction of unwanted odor interference based on pattern recognition for the first time. Six kinds of target gases and four kinds of unwanted odor interferences were experimentally studied. Fir
22#
發(fā)表于 2025-3-25 08:15:27 | 只看該作者
https://doi.org/10.1007/978-981-13-2167-2Electronic Nose; Pattern Recognition; Drift Compensation; Odor Recognition; Machine Learning; Gas Sensing
23#
發(fā)表于 2025-3-25 14:09:09 | 只看該作者
978-981-13-4741-2Springer Nature Singapore Pte Ltd. 2018
24#
發(fā)表于 2025-3-25 16:17:01 | 只看該作者
25#
發(fā)表于 2025-3-25 20:38:43 | 只看該作者
Industrial Development and Eco-Tourismsent analysis (PCA), an effective kernel PCA plus NDA method (KNDA) is proposed for rapid detection of gas mixture components. In this chapter, the NDA framework is derived with specific implementations. Experimental results demonstrate the superiority of the proposed KNDA method in multi-class recognition.
26#
發(fā)表于 2025-3-26 01:11:34 | 只看該作者
27#
發(fā)表于 2025-3-26 08:21:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:30:52 | 只看該作者
Cross-Domain Subspace Learning Approachk called cross-domain extreme learning machine (CdELM), which aims at learning a common (shared) subspace across domains. Experiments on drifted E-nose datasets demonstrate that the proposed CdELM method significantly outperforms other compared methods.
29#
發(fā)表于 2025-3-26 13:01:42 | 只看該作者
Chaos-Based Neural Network Optimization Approachence optimization BPNN method. Experimental results demonstrate the superiority and efficiency of the portable E-nose instrument integrated into chaos-based artificial neural network optimization algorithms in real-time monitoring of air quality in dwellings.
30#
發(fā)表于 2025-3-26 19:50:40 | 只看該作者
Discriminative Support Vector Machine-Based Odor Classificationntal results demonstrate that the HSVM model outperforms other classifiers in general. Also, HSVM classifier preliminarily shows its superiority in solution to discrimination in various electronic nose applications.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
凤阳县| 天等县| 罗定市| 茂名市| 醴陵市| 五家渠市| 桑植县| 鹤峰县| 通榆县| 双城市| 广西| 平和县| 东方市| 赤峰市| 崇州市| 琼中| 郑州市| 泗阳县| 若羌县| 临清市| 灌阳县| 阿勒泰市| 邵东县| 措勤县| 峨边| 大厂| 鄂托克前旗| 武汉市| 文昌市| 万山特区| 安阳县| 淮阳县| 上蔡县| 潜江市| 衡阳县| 鄱阳县| 龙门县| 涪陵区| 察雅县| 阳泉市| 上虞市|