找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einstein Manifolds; Arthur L. Besse Book 1987 Springer-Verlag Berlin Heidelberg 1987 Einstein.Manifolds.Riemannian geometry.Submersion.Top

[復(fù)制鏈接]
樓主: Recovery
31#
發(fā)表于 2025-3-26 22:17:13 | 只看該作者
Verfahren zur Erweiterung der Weichteileons of Riemannian (and pseudo-Riemannian) geometry. This is mainly intended to fix the definitions and notations that we will use in the book. As a consequence, many fundamental theorems will be quoted without proofs because these are available in classical textbooks on Riemannian geometry such as [
32#
發(fā)表于 2025-3-27 03:02:27 | 只看該作者
https://doi.org/10.1007/978-3-662-32976-4ield in the absence of matter. This equation was formulated by Einstein in 1915. A brief history of the development of Einstein’s field equation through quotes from early papers can be found in [Mi-Th-Wh] (pp. 431–434).
33#
發(fā)表于 2025-3-27 05:52:01 | 只看該作者
34#
發(fā)表于 2025-3-27 10:28:01 | 只看該作者
https://doi.org/10.1007/978-3-662-52825-9erential operator. In other words, given a metric ., its Ricci curvature . is computed locally in terms of the first and second partial derivatives of .. We will think of . as prescribed and wish to investigate the properties of the metric. Some natural questions that arise are:
35#
發(fā)表于 2025-3-27 16:25:00 | 只看該作者
36#
發(fā)表于 2025-3-27 18:34:50 | 只看該作者
https://doi.org/10.1007/978-3-642-29546-1r K?hler, or locally homogeneous. On a complex manifold, one often gets K?hler-Einstein metrics by specific techniques. One reason is perhaps, in the K?hler case, the relative autonomy of the Ricci tensor with regard to the metric, once the complex structure is given. The Ricci tensor—or, to be prec
37#
發(fā)表于 2025-3-27 22:51:40 | 只看該作者
,W?rme- und K?lteversorgungsanlagen,Riemannian metrics. We do not distinguish between an Einstein metric . and equivalent tensor fields . = ., where φ is a diffeomorphism of ., and . a positive constant. In the sequel, the quotient space of Einstein metrics under this relation is called the . of Einstein structures on ., and . by ..
38#
發(fā)表于 2025-3-28 04:05:06 | 只看該作者
39#
發(fā)表于 2025-3-28 07:45:28 | 只看該作者
,Gebühren für approbierte Aerzte,in fact quite different, more different for example than .(.) from .(.). More precisely, .(.) is included in .(2.), so Riemannian manifolds with holonomy contained in .(.) are particular cases of K?hler manifolds with zero Ricci curvature.
40#
發(fā)表于 2025-3-28 11:14:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 11:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高陵县| 陈巴尔虎旗| 武陟县| 奉新县| 五指山市| 蒙自县| 信阳市| 石景山区| 密山市| 陆丰市| 五大连池市| 绥阳县| 防城港市| 岳阳市| 嘉兴市| 尼玛县| 太和县| 图们市| 海口市| 定兴县| 丹寨县| 新巴尔虎左旗| 井冈山市| 延长县| 莱阳市| 九龙坡区| 迁西县| 封丘县| 庄浪县| 深州市| 大丰市| 青川县| 正宁县| 澜沧| 营口市| 昆明市| 玛纳斯县| 武平县| 来宾市| 疏勒县| 岑溪市|