找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einstein Manifolds; Arthur L. Besse Book 1987 Springer-Verlag Berlin Heidelberg 1987 Einstein.Manifolds.Riemannian geometry.Submersion.Top

[復制鏈接]
樓主: Recovery
21#
發(fā)表于 2025-3-25 05:33:51 | 只看該作者
Homogeneous Riemannian Manifolds,In this chapter, we sketch the general theory of homogeneous Riemannian manifolds and we use it to give some examples of (homogeneous) Einstein manifolds. Up to now, the general classification of homogeneous Einstein manifolds is not known even in the compact case. In particular, the following question is still an open problem.
22#
發(fā)表于 2025-3-25 07:55:26 | 只看該作者
23#
發(fā)表于 2025-3-25 13:09:56 | 只看該作者
Riemannian Submersions,The notion of . (see 1.70) has been intensively studied since the very beginning of Riemannian geometry. Indeed the first Riemannian manifolds to be studied were surfaces imbedded in R.. As a consequence, the differential geometry of Riemannian immersions is well known and available in many textbooks (see for example [Ko-No 1, 2], [Spi]).
24#
發(fā)表于 2025-3-25 19:18:20 | 只看該作者
25#
發(fā)表于 2025-3-25 20:19:44 | 只看該作者
26#
發(fā)表于 2025-3-26 02:39:54 | 只看該作者
Arthur L. BesseIncludes supplementary material:
27#
發(fā)表于 2025-3-26 06:28:31 | 只看該作者
28#
發(fā)表于 2025-3-26 09:03:54 | 只看該作者
https://doi.org/10.1007/978-3-540-74311-8Einstein; Manifolds; Riemannian geometry; Submersion; Topology; Volume; curvature; equation; function; geomet
29#
發(fā)表于 2025-3-26 16:22:41 | 只看該作者
978-3-540-74120-6Springer-Verlag Berlin Heidelberg 1987
30#
發(fā)表于 2025-3-26 18:46:48 | 只看該作者
Geburtshilfliche Operationslehref an infinity of small pieces of Euclidean spaces). In modern language, a Riemannian manifold (.) consists of the following data: a compact .. manifold . and a metric tensor field . which is a positive definite bilinear symmetric differential form on .. In other words, we associate with every point
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-20 11:04
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
介休市| 彭山县| 安仁县| 德阳市| 玉龙| 德格县| 南岸区| 资兴市| 门头沟区| 嘉定区| 忻城县| 星子县| 衡水市| 景洪市| 察雅县| 罗定市| 广德县| 衢州市| 青铜峡市| 阿勒泰市| 阳西县| 左贡县| 阿拉善盟| 双城市| 册亨县| 柳林县| 周口市| 阿拉善左旗| 赣榆县| 福泉市| 沂水县| 黑水县| 杂多县| 东乡县| 太保市| 舟山市| 平武县| 青海省| 南江县| 西昌市| 兴仁县|