找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics with Chaos and Fractals; Marat Akhmet,Mehmet Onur Fen,Ejaily Milad Alejaily Book 2020 Springer Nature Switzerland AG 2020 Chaos a

[復制鏈接]
樓主: 管玄樂團
21#
發(fā)表于 2025-3-25 05:59:50 | 只看該作者
Célibes, Mothers, and Church Cockroaches results can be easily extended to different types of differential equations. An example of an unpredictable function is provided. A proper irregular behavior in coupled Duffing equations is observed through simulations.
22#
發(fā)表于 2025-3-25 08:21:33 | 只看該作者
23#
發(fā)表于 2025-3-25 12:34:39 | 只看該作者
24#
發(fā)表于 2025-3-25 16:42:18 | 只看該作者
Working with the Impulsive Personwo principal novelties are in the basis of the research. The first one is that all coordinates of a solution are unpredictable functions. That is, solutions are .. Second, perturbations are . functions. Examples with numerical simulations are presented to illustrate the theoretical results. The resu
25#
發(fā)表于 2025-3-25 22:49:18 | 只看該作者
https://doi.org/10.1007/978-1-4684-3515-3amic equations on time scales by using the reduction technique to impulsive differential equations. The results are based on the Li–Yorke definition of chaos. An illustrative example is presented by means of a Duffing equation on a time scale.
26#
發(fā)表于 2025-3-26 03:45:46 | 只看該作者
27#
發(fā)表于 2025-3-26 04:40:04 | 只看該作者
28#
發(fā)表于 2025-3-26 08:29:17 | 只看該作者
29#
發(fā)表于 2025-3-26 16:12:27 | 只看該作者
Unpredictability in Bebutov Dynamics, results can be easily extended to different types of differential equations. An example of an unpredictable function is provided. A proper irregular behavior in coupled Duffing equations is observed through simulations.
30#
發(fā)表于 2025-3-26 18:03:14 | 只看該作者
Unpredictable Solutions of Hyperbolic Linear Equations,e equations are investigated. The hyperbolic cases are under discussion. The presence of unpredictable solutions confirms the existence of Poincaré chaos. Simulations illustrating the chaos are provided. The results of this chapter are published in paper.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
丘北县| 阿瓦提县| 天峨县| 敦化市| 嘉义县| 和田县| 洪湖市| 乌拉特后旗| 张家川| 乐都县| 喀什市| 永昌县| 九江县| 武川县| 乃东县| 旌德县| 天镇县| 彭州市| 高雄县| 通化市| 方城县| 金溪县| 万山特区| 长汀县| 札达县| 安泽县| 湘阴县| 松江区| 江陵县| 涞源县| 乐清市| 宜都市| 修武县| 新竹市| 盘锦市| 宣恩县| 汉寿县| 江都市| 顺昌县| 达拉特旗| 蒙山县|