找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dynamics with Chaos and Fractals; Marat Akhmet,Mehmet Onur Fen,Ejaily Milad Alejaily Book 2020 Springer Nature Switzerland AG 2020 Chaos a

[復(fù)制鏈接]
查看: 52594|回復(fù): 51
樓主
發(fā)表于 2025-3-21 17:57:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Dynamics with Chaos and Fractals
編輯Marat Akhmet,Mehmet Onur Fen,Ejaily Milad Alejaily
視頻videohttp://file.papertrans.cn/285/284220/284220.mp4
概述Stands as the first book presenting theoretical background on the unpredictable point and mapping of fractals.Introduces the concepts of unpredictable functions, abstract self-similarity, and similari
叢書名稱Nonlinear Systems and Complexity
圖書封面Titlebook: Dynamics with Chaos and Fractals;  Marat Akhmet,Mehmet Onur Fen,Ejaily Milad Alejaily Book 2020 Springer Nature Switzerland AG 2020 Chaos a
描述.The book is concerned with the concepts of chaos and fractals, which are within the scopes of dynamical systems, geometry, measure theory, topology, and numerical analysis during the last several decades. It is revealed that a special kind of Poisson stable point, which we call an unpredictable point, gives rise to the existence of chaos in the quasi-minimal set. This is the first time in the literature that the description of chaos is initiated from a single motion. Chaos is now placed on the line of oscillations, and therefore, it is a subject of study in the framework of the theories of dynamical systems and differential equations, as in this book. The techniques introduced in the book make it possible to develop continuous and discrete dynamics which admit fractals as points of trajectories as well as orbits themselves. To provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested. .
出版日期Book 2020
關(guān)鍵詞Chaos and fractals; differential equations; difference equations; chaos generation; chaos control; extens
版次1
doihttps://doi.org/10.1007/978-3-030-35854-9
isbn_softcover978-3-030-35856-3
isbn_ebook978-3-030-35854-9Series ISSN 2195-9994 Series E-ISSN 2196-0003
issn_series 2195-9994
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Dynamics with Chaos and Fractals影響因子(影響力)




書目名稱Dynamics with Chaos and Fractals影響因子(影響力)學(xué)科排名




書目名稱Dynamics with Chaos and Fractals網(wǎng)絡(luò)公開度




書目名稱Dynamics with Chaos and Fractals網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dynamics with Chaos and Fractals被引頻次




書目名稱Dynamics with Chaos and Fractals被引頻次學(xué)科排名




書目名稱Dynamics with Chaos and Fractals年度引用




書目名稱Dynamics with Chaos and Fractals年度引用學(xué)科排名




書目名稱Dynamics with Chaos and Fractals讀者反饋




書目名稱Dynamics with Chaos and Fractals讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:18:53 | 只看該作者
2195-9994 provide strong arguments for the genericity of chaos in the real and abstract universe, the concept of abstract similarity is suggested. .978-3-030-35856-3978-3-030-35854-9Series ISSN 2195-9994 Series E-ISSN 2196-0003
板凳
發(fā)表于 2025-3-22 02:18:14 | 只看該作者
https://doi.org/10.1007/978-3-030-35854-9Chaos and fractals; differential equations; difference equations; chaos generation; chaos control; extens
地板
發(fā)表于 2025-3-22 04:54:31 | 只看該作者
5#
發(fā)表于 2025-3-22 12:07:22 | 只看該作者
6#
發(fā)表于 2025-3-22 15:58:20 | 只看該作者
7#
發(fā)表于 2025-3-22 19:27:02 | 只看該作者
8#
發(fā)表于 2025-3-22 21:22:24 | 只看該作者
Nonlinear Unpredictable Perturbations,The results of this chapter are continuation of the research of Poincaré chaos initiated in Chaps. . and .. We focus on the construction of an unpredictable function, continuous on the real axis. This is the first time that perturbations depend nonlinearly on unpredictable functions.
9#
發(fā)表于 2025-3-23 05:10:03 | 只看該作者
10#
發(fā)表于 2025-3-23 08:57:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郸城县| 临沧市| 上林县| 玛多县| 大化| 贡觉县| 荆州市| 大兴区| 望都县| 合作市| 洪湖市| 青铜峡市| 榆中县| 电白县| 黄大仙区| 秦皇岛市| 安龙县| 通化县| 上蔡县| 广汉市| 禹城市| 巴塘县| 平泉县| 嘉定区| 盱眙县| 渑池县| 宁陕县| 郎溪县| 沅江市| 天峻县| 德令哈市| 新闻| 黔南| 旅游| 宜君县| 贵德县| 和田县| 舟曲县| 合阳县| 眉山市| 嘉黎县|