找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distance-Regular Graphs; Andries E. Brouwer,Arjeh M. Cohen,Arnold Neumaier Book 1989 Springer-Verlag Berlin Heidelberg 1989 Arithmetic.Lie

[復制鏈接]
31#
發(fā)表于 2025-3-27 00:56:55 | 只看該作者
32#
發(fā)表于 2025-3-27 05:05:34 | 只看該作者
Incidence, Prevalence, and ClassificationIn the later sections almost all known infinite families of distance-transitive graphs are described in this framework. The chapter ends with a determination of all distance-transitive graphs which naturally arise from a Tits system in a finite Chevalley group. Much more information on Tits systems,
33#
發(fā)表于 2025-3-27 08:38:23 | 只看該作者
34#
發(fā)表于 2025-3-27 12:37:49 | 只看該作者
The Decubitus Ulcer in Clinical Practicer 9 and implicitly in the context of parabolic representations of groups of Lie type. The nonisotropic points usually fall into a few orbits of the isometry group. The permutation rank of these orbits depends on the cardinality of the underlying field. We show that only in a few cases the related gr
35#
發(fā)表于 2025-3-27 15:36:37 | 只看該作者
36#
發(fā)表于 2025-3-27 19:47:09 | 只看該作者
https://doi.org/10.1007/978-3-642-74341-2Arithmetic; Lie; geometry; mathematics; proof; symmetric relation; combinatorics
37#
發(fā)表于 2025-3-28 00:09:03 | 只看該作者
978-3-642-74343-6Springer-Verlag Berlin Heidelberg 1989
38#
發(fā)表于 2025-3-28 03:15:27 | 只看該作者
Fluctuations of Conserved ChargesMotivated by applications to the classification of certain distance-regular graphs we consider representations of graphs by sets of vectors in a Euclidean space.
39#
發(fā)表于 2025-3-28 07:49:42 | 只看該作者
40#
發(fā)表于 2025-3-28 13:34:37 | 只看該作者
The Decubitus Ulcer in Clinical PracticeIn this chapter we discuss the known infinite families of graphs with classical parameters, except for some graphs of Lie type, treated in the next chapter. A few sporadic graphs with classical parameters can be found in Chapters 3 and 11, cf. Table 6.1.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 15:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
东阳市| 浙江省| 勐海县| 醴陵市| 澎湖县| 濮阳县| 双峰县| 黑水县| 竹山县| 岢岚县| 广平县| 高密市| 开远市| 江山市| 夏津县| 五莲县| 民丰县| 福州市| 时尚| 莱芜市| 宾阳县| 平泉县| 营口市| 余江县| 文昌市| 丰都县| 江达县| 伊宁市| 吕梁市| 开江县| 华池县| 东乡| 濮阳县| 吴堡县| 布尔津县| 呼伦贝尔市| 南充市| 拉萨市| 喀喇| 和静县| 罗城|