找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Distance-Regular Graphs; Andries E. Brouwer,Arjeh M. Cohen,Arnold Neumaier Book 1989 Springer-Verlag Berlin Heidelberg 1989 Arithmetic.Lie

[復制鏈接]
41#
發(fā)表于 2025-3-28 17:29:46 | 只看該作者
42#
發(fā)表于 2025-3-28 20:51:38 | 只看該作者
43#
發(fā)表于 2025-3-29 02:23:28 | 只看該作者
44#
發(fā)表于 2025-3-29 04:01:13 | 只看該作者
The Families of Graphs with Classical Parameters,In this chapter we discuss the known infinite families of graphs with classical parameters, except for some graphs of Lie type, treated in the next chapter. A few sporadic graphs with classical parameters can be found in Chapters 3 and 11, cf. Table 6.1.
45#
發(fā)表于 2025-3-29 10:45:07 | 只看該作者
46#
發(fā)表于 2025-3-29 14:21:16 | 只看該作者
Special Regular Graphs, neighbours of δ in Г.(γ) and . neighbours of δ in Г.(γ). In particular, Г is regular of valency . = .. The sequence.where . is the diameter of Г, is called the . of Г (cf. B. [71]); the numbers ., ., and ., where.is the number of neighbours of δ in Γ.(γ) for .(γ,δ) = ., are called the . of Γ. Clearly
47#
發(fā)表于 2025-3-29 17:05:35 | 只看該作者
Distance-Regular Graphs978-3-642-74341-2Series ISSN 0071-1136 Series E-ISSN 2197-5655
48#
發(fā)表于 2025-3-29 20:37:55 | 只看該作者
The Decline and Fall of the American Empire neighbours of δ in Г.(γ) and . neighbours of δ in Г.(γ). In particular, Г is regular of valency . = .. The sequence.where . is the diameter of Г, is called the . of Г (cf. B. [71]); the numbers ., ., and ., where.is the number of neighbours of δ in Γ.(γ) for .(γ,δ) = ., are called the . of Γ. Clearly
49#
發(fā)表于 2025-3-30 00:52:15 | 只看該作者
Book 1989terest, such as regularity and extremal properties in graphs, association schemes, representations of graphs in euclidean space, groups and geometries of Lie type, groups acting on graphs, and codes are covered independently. Many new results and proofs and more than 750 references increase the encyclopaedic value of this book.
50#
發(fā)表于 2025-3-30 07:53:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
上蔡县| 琼结县| 视频| 奉新县| 蓬莱市| 独山县| 安西县| 武功县| 南投市| 全州县| 龙门县| 宜州市| 大渡口区| 光泽县| 饶阳县| 芒康县| 宁陕县| 汕头市| 嵊州市| 芮城县| 宁强县| 湄潭县| 泉州市| 台湾省| 绥芬河市| 涞源县| 马龙县| 凌源市| 三穗县| 长丰县| 万山特区| 杭州市| 邵阳县| 读书| 沁源县| 蚌埠市| 彭州市| 瓦房店市| 湛江市| 富顺县| 民乐县|