找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano,Masatsugu Urabe Conference proceedings 2001 Springer-Verla

[復(fù)制鏈接]
樓主: 使委屈
51#
發(fā)表于 2025-3-30 11:30:22 | 只看該作者
52#
發(fā)表于 2025-3-30 16:27:20 | 只看該作者
53#
發(fā)表于 2025-3-30 16:58:24 | 只看該作者
On the Number of Views of Polyhedral Scenes, we close these gaps by improving the lower bounds. We construct an example of a scene .(....) orthographic views, and another with .(....) perspective views. Our construction can also be used to improve the known lower bounds for the number of silhouette views and for the number of distinct views from a viewpoint moving along a straight line.
54#
發(fā)表于 2025-3-30 21:16:55 | 只看該作者
55#
發(fā)表于 2025-3-31 02:50:27 | 只看該作者
56#
發(fā)表于 2025-3-31 07:39:36 | 只看該作者
57#
發(fā)表于 2025-3-31 10:13:05 | 只看該作者
58#
發(fā)表于 2025-3-31 16:53:29 | 只看該作者
On double bound graphs with respect to graph operationsons. For example, The Cartesian product . × . of two graphs . and . is a DB-graph if and only if both . and . are bipartite graphs, the corona . o . of two graphs . and . is a DB-graph if and only if . is a bipartite graph and . is a UB-graph, and the middle graph . of a graph . is a DB-graph if and only if . is an even cycle or a path, etc.
59#
發(fā)表于 2025-3-31 21:25:42 | 只看該作者
On Paths in a Complete Bipartite Geometric Graphtraight-line segment. We prove that (i) If |. (. + 1)(2. - 4)+1, then the geometric complete bipartite graph . contains a path that passes through all the points in . and has no crossings; and (ii) There exists a configuration of . ∪ . with . such that in . every path containing the set . has at least one crossing.
60#
發(fā)表于 2025-3-31 23:43:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万盛区| 都安| 临湘市| 江津市| 沧源| 昭觉县| 高陵县| 丹寨县| 美姑县| 吴堡县| 堆龙德庆县| 旺苍县| 白河县| 城固县| 吉水县| 眉山市| 安泽县| 葵青区| 宿州市| 永胜县| 东光县| 嘉鱼县| 措美县| 肇庆市| 馆陶县| 扶沟县| 德江县| 承德市| 青浦区| 乐业县| 平山县| 宝山区| 黔南| 阿巴嘎旗| 崇义县| 张家港市| 金门县| 四会市| 刚察县| 棋牌| 藁城市|