找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano,Masatsugu Urabe Conference proceedings 2001 Springer-Verla

[復(fù)制鏈接]
樓主: 使委屈
31#
發(fā)表于 2025-3-26 22:51:01 | 只看該作者
Approximating Uniform Triangular Meshes for Spheres a relation of this problem to a certain extreme packing problem. Based on this relationship, we develop a heuristic producing 6-approximation for spheres (provided n is chosen sufficiently large). That is, the produced triangular mesh is . in this respect..The method is easy to implement and runs in .(..) time and . space.
32#
發(fā)表于 2025-3-27 02:37:09 | 只看該作者
33#
發(fā)表于 2025-3-27 06:41:33 | 只看該作者
34#
發(fā)表于 2025-3-27 11:21:58 | 只看該作者
35#
發(fā)表于 2025-3-27 16:51:03 | 只看該作者
36#
發(fā)表于 2025-3-27 19:57:13 | 只看該作者
37#
發(fā)表于 2025-3-27 23:50:02 | 只看該作者
Geometric Dissections that Swing and Twistns and stars. For twist hinges these include the conversion of swing hinges, the P-twist for parallelograms, and completing the pseudo-tesellation. Open problems relating to the possible universality of such hingings are posed.
38#
發(fā)表于 2025-3-28 04:45:09 | 只看該作者
Generalized Balanced Partitions of Two Sets of Points in the Plane) ∩ conv (..) = ? for all 1 ≤ . < . ≤ ., where conv(..) denotes the convex hull of ..; and (.) each .. contains exactly .. red points and .. blue points for every 1 ≤ . ≤ ...We shall prove that the above partition exists in the case where (i) 2 ≤ . ≤ 8 and 1 ≤ .. ≤ ./2 for every 1 ≤ . ≤ ., and (ii) .. = .. = ... = .. = 2 and .. =1.
39#
發(fā)表于 2025-3-28 07:37:00 | 只看該作者
Transabdominal Preperitoneal (TAPP) Repairposes two restrictions, one based on the reversal of the perimeter (surface area) and the interior (cross-section) of the polygon (polyhedron), and the other based on the hingeability of parts. In this paper, we survey main results on Dudeney dissections of polygons and polyhedrons.
40#
發(fā)表于 2025-3-28 13:57:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善盟| 璧山县| 岑巩县| 吉水县| 博野县| 塘沽区| 西丰县| 滁州市| 鄂尔多斯市| 陵川县| 嵩明县| 林西县| 阳江市| 苏尼特右旗| 会泽县| 多伦县| 沅江市| 高阳县| 丹东市| 利辛县| 涪陵区| 南丰县| 迭部县| 巨野县| 西乡县| 南汇区| 金乡县| 波密县| 福鼎市| 汝阳县| 武宣县| 三河市| 芜湖县| 潜山县| 长岛县| 郑州市| 桓台县| 泰安市| 闽清县| 安达市| 兴国县|