找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dimension and Recurrence in Hyperbolic Dynamics; Luis Barreira Book 2008 Birkh?user Basel 2008 calculus.dimension theory.hyperbolic set.ma

[復(fù)制鏈接]
樓主: Obsolescent
41#
發(fā)表于 2025-3-28 18:28:04 | 只看該作者
Fabian Kessl,Christian Reutlingerticular, we show that the mixed spectra are analytic in several contexts. The analyticity follows from a conditional variational principle for the .-dimension which is also established in this chapter, and which is important in its own right. On the other hand, we show that there are many nonconvex mixed spectra.
42#
發(fā)表于 2025-3-28 21:16:46 | 只看該作者
Monika Burmester,Norbert Wohlfahrtmay be able to recover information about a dynamical system from the information contained in its multifractal spectra. Unfortunately, in general, when we use a single spectrum there is no multifractal rigidity even for topological Markov chains on three symbols.
43#
發(fā)表于 2025-3-29 01:50:59 | 只看該作者
Sozialr?umliche Praxis und SozialraumarbeitLyapunov exponents. This allows us to whow that the Hausdorff dimension of a (nonergodic) invariant measure is equal to the essential supremum of the Hausdorff dimensions of the measures in an ergodic decomposition.
44#
發(fā)表于 2025-3-29 07:07:18 | 只看該作者
Dimension of Irregular Setsmeasure. Nevertheless, it may be very large from the topological and dimensional points of view. This is the main theme of this chapter, where we also describe a general approach to the study of the .-dimension of irregular sets.
45#
發(fā)表于 2025-3-29 11:07:12 | 只看該作者
46#
發(fā)表于 2025-3-29 12:55:26 | 只看該作者
47#
發(fā)表于 2025-3-29 19:30:46 | 只看該作者
48#
發(fā)表于 2025-3-29 22:54:16 | 只看該作者
49#
發(fā)表于 2025-3-30 02:26:50 | 只看該作者
50#
發(fā)表于 2025-3-30 04:59:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆林| 肇东市| 鄱阳县| 定日县| 布尔津县| 杭锦旗| 城口县| 祁连县| 驻马店市| 万全县| 紫金县| 镶黄旗| 东至县| 从江县| 常熟市| 尤溪县| 宜丰县| 卢湾区| 察隅县| 锡林郭勒盟| 定安县| 乌拉特中旗| 威远县| 金昌市| 饶河县| 上杭县| 筠连县| 石河子市| 盖州市| 仙居县| 平原县| 琼结县| 大厂| 阿合奇县| 通道| 佛坪县| 武强县| 深泽县| 峨边| 镇巴县| 邻水|