找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dimension and Recurrence in Hyperbolic Dynamics; Luis Barreira Book 2008 Birkh?user Basel 2008 calculus.dimension theory.hyperbolic set.ma

[復制鏈接]
樓主: Obsolescent
11#
發(fā)表于 2025-3-23 11:55:28 | 只看該作者
12#
發(fā)表于 2025-3-23 14:59:38 | 只看該作者
Sozialp?dagogik – P?dagogik des Sozialenerved in Section 3.1, one of the motivations for the study of geometric constructions is precisely the study of the dimension of invariant sets of hyperbolic dynamics. We show in this chapter that indeed a similar approach can be effected for repellers and hyperbolic sets of conformal maps, using Ma
13#
發(fā)表于 2025-3-23 18:56:49 | 只看該作者
Sozialp?dagogik – P?dagogik des Sozialenional version of the existence of ergodic measures of maximal entropy. A crucial difference is that while the entropy map is upper semicontinuous, the map ν→dim. ν is neither upper semicontinuous nor lower semicontinuous. Our approach is based on the thermodynamic formalism. It turns out that for a
14#
發(fā)表于 2025-3-24 00:54:34 | 只看該作者
Vernachl?ssigung, Misshandlung, Missbrauchubarea of the dimension theory of dynamical systems. Briefly speaking, it studies the complexity of the level sets of invariant local quantities obtained from a dynamical system. For example, we can consider Birkhoff averages, Lyapunov exponents, pointwise dimensions, and local entropies. These func
15#
發(fā)表于 2025-3-24 03:26:26 | 只看該作者
Intelligenzminderung (Geistige Behinderung)namical systems and other invariant local quantities, besides the pointwise dimension considered in (6.1). With the purpose of unifying the theory, in 9 Barreira, Pesin and Schmeling proposed a general concept of multifractal analysis that we describe in this chapter. In particular, this provides ma
16#
發(fā)表于 2025-3-24 10:11:16 | 只看該作者
Ute Ziegenhain PD Dr.,Rüdiger von Kriess. These spectra are obtained from multifractal decompositions such as the one in (7.1). In particular, we possess very detailed information from the ergodic, topological, and dimensional points of view about the level sets . in each multifractal decomposition. On the other hand, we gave no nontrivi
17#
發(fā)表于 2025-3-24 12:56:27 | 只看該作者
18#
發(fā)表于 2025-3-24 16:13:19 | 只看該作者
Andreas Borchert,Susanne Maurerlocal entropy, and pointwise dimension. However, the theory of multifractal analysis described in the former chapters only considers separately each of these local quantities. This led Barreira, Saussol and Schmeling to develop in 20 a multidimensional version of the theory of multifractal analysis.
19#
發(fā)表于 2025-3-24 22:41:07 | 只看該作者
20#
發(fā)表于 2025-3-25 03:06:44 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 16:30
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
张家界市| 盐池县| 白山市| 怀集县| 周宁县| 米泉市| 准格尔旗| 耒阳市| 鹤壁市| 合川市| 泗阳县| 灵璧县| 蓬莱市| 正镶白旗| 绥化市| 华宁县| 江北区| 新乡县| 都匀市| 潮州市| 开化县| 玛曲县| 黎川县| 龙南县| 金昌市| 龙游县| 资源县| 江都市| 台江县| 通城县| 广灵县| 平塘县| 台中市| 东台市| 浙江省| 舒兰市| 大英县| 黎城县| 临沂市| 德保县| 囊谦县|