找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Critical Point Theory; Sandwich and Linking Martin Schechter Book 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復(fù)制鏈接]
樓主: risky-drinking
31#
發(fā)表于 2025-3-26 22:33:58 | 只看該作者
d reason for this. The criterion . is very difficult to verify in practice, while the corresponding statement for linking pairs is easier. We were able to provide a reasonable list of linking sets at the end of Chap. ., but we have not yet been able to do so for sandwich sets. In this chapter we sha
32#
發(fā)表于 2025-3-27 04:54:52 | 只看該作者
33#
發(fā)表于 2025-3-27 09:03:01 | 只看該作者
34#
發(fā)表于 2025-3-27 13:31:43 | 只看該作者
Wortgeschichten aus alten Gemeinden,.?(.). to have a nonempty resolvent. To achieve this, we assumed that .?(.) was periodic in .. This forced us to assume the same for .(., .), and we had to deal with several restrictions in our methods. In this chapter we study the equation without making any periodicity assumptions on the potential
35#
發(fā)表于 2025-3-27 14:44:43 | 只看該作者
Wortgeschichten aus alten Gemeinden,em is to solve . In particular, one searches for properties of .(., .) which guarantee the existence of solutions. This is not a trivial situation; there does not appear to be a criterion which tells us whether or not the problem is solvable.
36#
發(fā)表于 2025-3-27 18:52:05 | 只看該作者
37#
發(fā)表于 2025-3-27 23:19:03 | 只看該作者
38#
發(fā)表于 2025-3-28 06:07:16 | 只看該作者
39#
發(fā)表于 2025-3-28 07:42:02 | 只看該作者
ir does not separate the functional, nothing can be said concerning a potential critical point. This raises the questions, “Is there anything one can do if one cannot find linking sets that separate the functional?” “Are there sets that can lead to critical sequences even though they do not separate the functional?” Fortunately, there are.
40#
發(fā)表于 2025-3-28 12:46:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威远县| 五河县| 武川县| 政和县| 当涂县| 宁河县| 会宁县| 江油市| 尖扎县| 宜良县| 宝丰县| 盐亭县| 虎林市| 罗城| 即墨市| 松江区| 昌吉市| 连云港市| 大庆市| 镇康县| 原平市| 翁源县| 隆尧县| 湘阴县| 疏附县| 灌南县| 苍山县| 宽城| 富锦市| 郯城县| 百色市| 贡山| 鲁山县| 乐业县| 石屏县| 科技| 康保县| 泰顺县| 莆田市| 大厂| 汉阴县|