找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Critical Point Theory; Sandwich and Linking Martin Schechter Book 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復(fù)制鏈接]
樓主: risky-drinking
21#
發(fā)表于 2025-3-25 05:46:41 | 只看該作者
22#
發(fā)表于 2025-3-25 10:15:49 | 只看該作者
Global Solutions,.?(.). to have a nonempty resolvent. To achieve this, we assumed that .?(.) was periodic in .. This forced us to assume the same for .(., .), and we had to deal with several restrictions in our methods. In this chapter we study the equation without making any periodicity assumptions on the potential
23#
發(fā)表于 2025-3-25 14:23:27 | 只看該作者
24#
發(fā)表于 2025-3-25 15:53:11 | 只看該作者
Nonlinear Optics,on coefficient and the functions are periodic with respect to the variables . Here, . where .?(.) is a continuous, nonnegative function periodic in . Steady state solutions satisfy the following equation over a periodic domain . . where ., . are parameters. The solutions . are to be periodic in Ω wi
25#
發(fā)表于 2025-3-25 21:13:22 | 只看該作者
https://doi.org/10.1007/978-3-030-45603-0Critical point theory; Critical point calculus; Critical point theory applications; Variational methods
26#
發(fā)表于 2025-3-26 02:32:32 | 只看該作者
27#
發(fā)表于 2025-3-26 05:55:26 | 只看該作者
28#
發(fā)表于 2025-3-26 10:58:47 | 只看該作者
29#
發(fā)表于 2025-3-26 13:06:20 | 只看該作者
a .. functional(usually representing the energy) arising from the given data. As an illustration, the equation . is the Euler equation of the functional . on an appropriate space, where . and the norm is that of ... The solving of the Euler equations is tantamount to finding critical points of the
30#
發(fā)表于 2025-3-26 20:02:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 00:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
娄底市| 西安市| 兴山县| 毕节市| 富顺县| 台山市| 琼中| 志丹县| 井研县| 鄱阳县| 和平县| 西峡县| 无为县| 长阳| 中江县| 高碑店市| 潮安县| 麦盖提县| 巩留县| 瓦房店市| 安顺市| 襄垣县| 札达县| 吴忠市| 台前县| 石泉县| 营口市| 安丘市| 蚌埠市| 洞口县| 满洲里市| 吴旗县| 宝鸡市| 且末县| 新竹市| 绥化市| 马鞍山市| 叙永县| 湛江市| 社旗县| 泉州市|