找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Critical Point Theory; Sandwich and Linking Martin Schechter Book 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[復(fù)制鏈接]
樓主: risky-drinking
21#
發(fā)表于 2025-3-25 05:46:41 | 只看該作者
22#
發(fā)表于 2025-3-25 10:15:49 | 只看該作者
Global Solutions,.?(.). to have a nonempty resolvent. To achieve this, we assumed that .?(.) was periodic in .. This forced us to assume the same for .(., .), and we had to deal with several restrictions in our methods. In this chapter we study the equation without making any periodicity assumptions on the potential
23#
發(fā)表于 2025-3-25 14:23:27 | 只看該作者
24#
發(fā)表于 2025-3-25 15:53:11 | 只看該作者
Nonlinear Optics,on coefficient and the functions are periodic with respect to the variables . Here, . where .?(.) is a continuous, nonnegative function periodic in . Steady state solutions satisfy the following equation over a periodic domain . . where ., . are parameters. The solutions . are to be periodic in Ω wi
25#
發(fā)表于 2025-3-25 21:13:22 | 只看該作者
https://doi.org/10.1007/978-3-030-45603-0Critical point theory; Critical point calculus; Critical point theory applications; Variational methods
26#
發(fā)表于 2025-3-26 02:32:32 | 只看該作者
27#
發(fā)表于 2025-3-26 05:55:26 | 只看該作者
28#
發(fā)表于 2025-3-26 10:58:47 | 只看該作者
29#
發(fā)表于 2025-3-26 13:06:20 | 只看該作者
a .. functional(usually representing the energy) arising from the given data. As an illustration, the equation . is the Euler equation of the functional . on an appropriate space, where . and the norm is that of ... The solving of the Euler equations is tantamount to finding critical points of the
30#
發(fā)表于 2025-3-26 20:02:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃园县| 铜山县| 镶黄旗| 晋州市| 喜德县| 永宁县| 扶绥县| 黄大仙区| 定州市| 木里| 沈阳市| 镇远县| 苏尼特左旗| 察雅县| 繁峙县| 平和县| 丹棱县| 晋州市| 乌拉特中旗| 淳安县| 封开县| 吉木萨尔县| 城步| 衢州市| 烟台市| 延津县| 黔西县| 甘谷县| 元朗区| 尖扎县| 平山县| 武邑县| 满城县| 剑河县| 荣成市| 江津市| 垫江县| 尉氏县| 沭阳县| 万全县| 栾城县|