找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convexity and Its Applications; Peter M. Gruber,J?rg M. Wills Book 1983 Springer Basel AG 1983 optimization.research.science and technolog

[復(fù)制鏈接]
樓主: 烤問
41#
發(fā)表于 2025-3-28 17:12:30 | 只看該作者
42#
發(fā)表于 2025-3-28 20:26:33 | 只看該作者
http://image.papertrans.cn/c/image/237860.jpg
43#
發(fā)表于 2025-3-29 02:01:46 | 只看該作者
44#
發(fā)表于 2025-3-29 03:43:33 | 只看該作者
45#
發(fā)表于 2025-3-29 11:03:16 | 只看該作者
Algebraic Lattices,kerkerker [6]. As none of these sources deals specifically with lattices other than those of Minkowski-type (i.e. a ?-module with N generators in ?.) it seems worthwhile to trace the main developments there for lattices which have more algebraic structure. Even though these are often endowed with ar
46#
發(fā)表于 2025-3-29 13:09:01 | 只看該作者
47#
發(fā)表于 2025-3-29 15:47:06 | 只看該作者
Convexity Through the Ages, and all chords of which lie on the same side of it. Analogously he defines a convex surface bounded by a plane curve. His determination of arc lengths is based on certain postulates. One of these is: If one of two convex arcs with common endpoints lies between the other and the line joining the end
48#
發(fā)表于 2025-3-29 20:08:41 | 只看該作者
Approximation of convex bodies,t. On the one hand approximation is used as a tool for investigations ranging from classical results on mixed volumes to questions concerning the ε-entropy of spaces of convex bodies, on the other hand there is an intrinsic geometric interest in the approximation problem itself.
49#
發(fā)表于 2025-3-30 02:29:59 | 只看該作者
50#
發(fā)表于 2025-3-30 07:46:17 | 只看該作者
Valuations on convex bodies, of geometric convexity, and it has seen some progress in recent years. The occurrence of valuations in the theory of convex bodies can be traced back to the notion of volume in two essentially different ways. Firstly, the volume of convex bodies, being the restriction of a measure, is itself a valu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通道| 巫山县| 石柱| 四川省| 临海市| 文水县| 丰都县| 应城市| 衡南县| 安义县| 华池县| 孝感市| 呼图壁县| 福贡县| 龙泉市| 扎囊县| 伊春市| 合作市| 建宁县| 贞丰县| 寿宁县| 比如县| 霍林郭勒市| 通辽市| 临朐县| 景泰县| 平和县| 德阳市| 黄骅市| 太和县| 南漳县| 开远市| 曲阳县| 乌兰察布市| 定结县| 中江县| 壤塘县| 阿拉尔市| 齐齐哈尔市| 芷江| 永州市|