找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convexity and Its Applications; Peter M. Gruber,J?rg M. Wills Book 1983 Springer Basel AG 1983 optimization.research.science and technolog

[復(fù)制鏈接]
樓主: 烤問
31#
發(fā)表于 2025-3-27 00:18:38 | 只看該作者
Promotion of Self-Regulated Learning,kerkerker [6]. As none of these sources deals specifically with lattices other than those of Minkowski-type (i.e. a ?-module with N generators in ?.) it seems worthwhile to trace the main developments there for lattices which have more algebraic structure. Even though these are often endowed with ar
32#
發(fā)表于 2025-3-27 03:29:03 | 只看該作者
33#
發(fā)表于 2025-3-27 09:09:28 | 只看該作者
34#
發(fā)表于 2025-3-27 09:55:04 | 只看該作者
35#
發(fā)表于 2025-3-27 16:55:50 | 只看該作者
https://doi.org/10.1007/0-306-47682-7on the other are closely related (see [1] §17). The former belongs to differential geometry, the latter to geometric convexity. Some theorems have a differential geometric version as well as a convexity version; these depend on each other.
36#
發(fā)表于 2025-3-27 18:31:01 | 只看該作者
37#
發(fā)表于 2025-3-28 00:37:44 | 只看該作者
Technology, Mathematucs, and industry, have been given in terms of properties of minimal and closest points, or by considering special retractions. Yet, the very strong connections existing among the above notions have not been considered in full. This present analysis shows that some results can be obtained from older ones, and other r
38#
發(fā)表于 2025-3-28 06:03:51 | 只看該作者
39#
發(fā)表于 2025-3-28 06:59:45 | 只看該作者
Technology, Mathematucs, and industry, in Banach spaces, this occurred in 1967, when Marc Rieffel wanted to do a thorough classroom presentation of the Radon-Nikod?m theorem for Banach space-valued measures. In formulating a condition on the range of such a measure which would be sufficient for the validity of the Radon-Nikodym theorem,
40#
發(fā)表于 2025-3-28 12:46:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拉萨市| 双辽市| 胶南市| 弥勒县| 安平县| 安新县| 怀宁县| 晋城| 柳江县| 海兴县| 连州市| 舒兰市| 城口县| 乌拉特后旗| 诸暨市| 芮城县| 泰兴市| 曲松县| 郓城县| 延庆县| 射阳县| 萨嘎县| 临海市| 浦北县| 长武县| 印江| 治县。| 榆中县| 双流县| 大厂| 栾城县| 鄂托克旗| 成都市| 丁青县| 夹江县| 平昌县| 遂宁市| 通海县| 宕昌县| 布尔津县| 阳高县|