找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convergence and Summability of Fourier Transforms and Hardy Spaces; Ferenc Weisz Book 2017 Springer International Publishing AG 2017 Fejér

[復(fù)制鏈接]
樓主: Orthosis
21#
發(fā)表于 2025-3-25 05:28:32 | 只看該作者
One-Dimensional Hardy Spacesein [308, 309], Stein and Weiss [311], Lu [233], Uchiyama [340] and Grafakos [152]. Beyond these, the Hardy spaces have been introduced for martingales as well (see e.g. Garsia [127], Neveu [260], Dellacherie and Meyer [85, 86], Long [232] and Weisz [347]).
22#
發(fā)表于 2025-3-25 08:15:56 | 只看該作者
23#
發(fā)表于 2025-3-25 12:46:05 | 只看該作者
2. Semiconvex Hulls of Compact Sets,similar results as in Chap.?. For the restricted convergence, we use the Hardy space . and for the unrestricted .. We show that both maximal operators are bounded from the corresponding Hardy space to ., which implies the almost everywhere convergence. In both cases, the set of convergence is characterized as two types of Lebesgue points.
24#
發(fā)表于 2025-3-25 17:37:12 | 只看該作者
25#
發(fā)表于 2025-3-25 20:38:24 | 只看該作者
26#
發(fā)表于 2025-3-26 01:15:53 | 只看該作者
27#
發(fā)表于 2025-3-26 06:23:02 | 只看該作者
https://doi.org/10.1007/979-8-8688-0500-4 analogous results to those of Sections?.–. for higher dimensions. In the first section, we introduce the Fourier transform for functions and for tempered distributions and give the most important results. Since these proofs are very similar to those of the one-dimensional ones, we omit the proofs.
28#
發(fā)表于 2025-3-26 08:52:21 | 只看該作者
https://doi.org/10.1007/979-8-8688-0500-4higher dimensional Fourier transforms. As in the literature, we investigate the three cases . = 1, . = 2 and . = .. The other type of summability, the so-called rectangular summability, will be investigated in the next chapter. Both types are general summability methods defined by a function .. We w
29#
發(fā)表于 2025-3-26 16:02:45 | 只看該作者
30#
發(fā)表于 2025-3-26 19:14:31 | 只看該作者
https://doi.org/10.1007/978-3-319-56814-0Fejér summability; fourier analysis; hardy spaces; Lebesgue points; strong summability; harmonic analysis
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 21:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开阳县| 咸阳市| 上高县| 赤峰市| 平武县| 杭州市| 句容市| 屏南县| 寻乌县| 金门县| 北票市| 美姑县| 洛川县| 河北省| 苍溪县| 措美县| 宿迁市| 浦北县| 普兰店市| 天镇县| 申扎县| 瑞安市| 浪卡子县| 汕头市| 黎城县| 万山特区| 广南县| 宁南县| 云龙县| 太原市| 德庆县| 静乐县| 石泉县| 同江市| 高陵县| 万盛区| 蓝田县| 资阳市| 亚东县| 德庆县| 宜州市|