找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convergence and Summability of Fourier Transforms and Hardy Spaces; Ferenc Weisz Book 2017 Springer International Publishing AG 2017 Fejér

[復制鏈接]
樓主: Orthosis
11#
發(fā)表于 2025-3-23 11:37:49 | 只看該作者
12#
發(fā)表于 2025-3-23 16:56:27 | 只看該作者
2296-5009 cent results from the past 20-30 years.Considers strong summThis book investigates the convergence and summability of both one-dimensional and multi-dimensional Fourier transforms, as well as the theory of Hardy spaces. To do so, it studies a general summability method known as theta-summation, whic
13#
發(fā)表于 2025-3-23 19:31:50 | 只看該作者
14#
發(fā)表于 2025-3-24 01:03:18 | 只看該作者
System Requirements and Licensing,. are very similar to those for the one-dimensional . spaces studied in Chap.?., so we omit the corresponding proofs. However, the proofs for . are different from the one-dimensional version requiring new ideas. We also study some generalizations of the Hardy-Littlewood maximal function for multi-dimensional functions.
15#
發(fā)表于 2025-3-24 03:34:42 | 只看該作者
16#
發(fā)表于 2025-3-24 09:17:38 | 只看該作者
https://doi.org/10.1007/979-8-8688-0500-4gular Dirichlet integrals. Using the analogous results for the partial sums of multi-dimensional Fourier series proved in Section?4.2, we show that the Dirichlet integrals converge in the .-norm to the function (1 < . < .). The multi-dimensional version of Carleson’s theorem is also verified.
17#
發(fā)表于 2025-3-24 12:42:50 | 只看該作者
One-Dimensional Fourier Transforms . < .). The proof of Carleson’s theorem, i.e. that of the almost everywhere convergence can be found in Carleson [52], Grafakos [152], Arias de Reyna [8], Muscalu and Schlag [253], Lacey [207] or Demeter [88].
18#
發(fā)表于 2025-3-24 17:51:52 | 只看該作者
19#
發(fā)表于 2025-3-24 19:10:40 | 只看該作者
Book 2017y spaces. To do so, it studies a general summability method known as theta-summation, which encompasses all the well-known summability methods, such as the Fejér, Riesz, Weierstrass, Abel, Picard, Bessel and Rogosinski summations.?.Following on the classic books by Bary (1964) and Zygmund (1968), th
20#
發(fā)表于 2025-3-25 02:23:01 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 21:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
青川县| 封开县| 黔南| 中江县| 宁陵县| 华安县| 会东县| 峨眉山市| 利津县| 威宁| 交城县| 马关县| 当涂县| 定州市| 株洲县| 融水| 兰西县| 礼泉县| 扎鲁特旗| 嘉禾县| 泾阳县| 肇庆市| 沈丘县| 湘潭市| 大田县| 宜阳县| 陆河县| 任丘市| 滨州市| 嘉祥县| 长岭县| 常德市| 崇义县| 水城县| 吉首市| 鹿邑县| 静安区| 濮阳市| 多伦县| 伊吾县| 鄯善县|