找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous-Time Markov Chains; An Applications-Orie William J. Anderson Book 1991 Springer-Verlag New York Inc. 1991 Branching process.Mark

[復制鏈接]
樓主: SORB
11#
發(fā)表于 2025-3-23 12:37:10 | 只看該作者
Continuous-Time Markov Chains978-1-4612-3038-0Series ISSN 0172-7397 Series E-ISSN 2197-568X
12#
發(fā)表于 2025-3-23 16:45:15 | 只看該作者
13#
發(fā)表于 2025-3-23 18:30:53 | 只看該作者
14#
發(fā)表于 2025-3-24 00:19:36 | 只看該作者
https://doi.org/10.1007/978-3-322-94806-9called a continuous-time parameter Markov chain if for any finite set . of “times,” and corresponding set . of states in . such that ., we have . Equation (1.1) is called the Markov property. If for all ., . such that . and all .,. ε . the conditional probability . appearing on the right-hand side o
15#
發(fā)表于 2025-3-24 05:02:23 | 只看該作者
Produktion und Unternehmungsformen such a stochastic process is uniquely determined by the one-step transition matrix . whose .,.th component is ., and an initial distribution vector ., whose .th component is .. Every probability involving the random variables of this chain can be determined from the finite-dimensional distributions
16#
發(fā)表于 2025-3-24 09:35:51 | 只看該作者
17#
發(fā)表于 2025-3-24 10:50:05 | 只看該作者
Renate Neub?umer,Brigitte Hewelpect convergence of .(.) to the ergodic limits π.? We shall study two special types of ergodicity, the so-called strong ergodicity and exponential ergodicity. Of course, our main interest is always to characterize these properties in terms of the . matrix.
18#
發(fā)表于 2025-3-24 17:37:12 | 只看該作者
,Konstruktive Ger?uschminderungsma?nahmen,ent the birth and death .-matrix of (3.2.1) given by.,where . is a set of birth-death parameters. Note again that . is conservative if and only if . = 0, and that if .. > 0, we are allowing the process to jump from state 0 directly to an absorbing state which, given the context here, is most conveni
19#
發(fā)表于 2025-3-24 21:01:29 | 只看該作者
20#
發(fā)表于 2025-3-25 02:24:03 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 16:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
太仆寺旗| 永年县| 香河县| 斗六市| 临泉县| 鸡泽县| 临猗县| 麟游县| 阜宁县| 如皋市| 沂南县| 丹阳市| 沙雅县| 平度市| 邢台市| 庆元县| 久治县| 于都县| 邹城市| 保定市| 博白县| 长顺县| 金昌市| 唐海县| 泰顺县| 高州市| 察雅县| 扎囊县| 称多县| 西和县| 富川| 新龙县| 莎车县| 海林市| 凤台县| 华安县| 博白县| 安阳市| 竹山县| 蒙城县| 旌德县|