找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuous-Time Markov Chains; An Applications-Orie William J. Anderson Book 1991 Springer-Verlag New York Inc. 1991 Branching process.Mark

[復制鏈接]
樓主: SORB
21#
發(fā)表于 2025-3-25 04:07:48 | 只看該作者
22#
發(fā)表于 2025-3-25 08:19:41 | 只看該作者
978-1-4612-7772-9Springer-Verlag New York Inc. 1991
23#
發(fā)表于 2025-3-25 12:32:35 | 只看該作者
https://doi.org/10.1007/978-3-322-94827-4In this chapter, we will be looking more closely at questions of nonuniqueness and uniqueness of .-functions. However, it will be more convenient to work with the Laplace transforms of the quantities involved, particularly the resolvent function in place of the transition function, rather than in the time domain as we did in Chapter 2.
24#
發(fā)表于 2025-3-25 16:34:02 | 只看該作者
25#
發(fā)表于 2025-3-25 20:36:29 | 只看該作者
,übungsaufgaben und L?sungswege,A transition function . is said to be . if there exists a set . of strictly positive numbers such that. for all . and ..If, in addition, we have Σ.. = 1, then . is called symmetric. In either case, the set . is called the symmetrizing measure.
26#
發(fā)表于 2025-3-26 01:09:34 | 只看該作者
Teubner Studienbücher MathematikIn this section, we investigate processes with state space . which are basically birth and death processes, but which also allow downward jumps called ., of arbitrary size.
27#
發(fā)表于 2025-3-26 07:25:56 | 只看該作者
28#
發(fā)表于 2025-3-26 12:30:33 | 只看該作者
Classification of States and Invariant Measures,Let ., be a standard transition function, and let . denote a continuous-time Markov chain with state space ., and having . as its transition function.
29#
發(fā)表于 2025-3-26 14:53:03 | 只看該作者
Reversibility, Monotonicity, and Other Properties,A transition function . is said to be . if there exists a set . of strictly positive numbers such that. for all . and ..If, in addition, we have Σ.. = 1, then . is called symmetric. In either case, the set . is called the symmetrizing measure.
30#
發(fā)表于 2025-3-26 19:45:46 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 18:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南和县| 宝兴县| 铁岭市| 台湾省| 化州市| 东乌珠穆沁旗| 河北区| 大港区| 皮山县| 巴东县| 类乌齐县| 彩票| 湟中县| 莒南县| 乌兰县| 滁州市| 抚远县| 凤山县| 宁化县| 两当县| 连州市| 黄大仙区| 临湘市| 花莲县| 中方县| 屏东市| 威宁| 伊春市| 仲巴县| 和林格尔县| 吴旗县| 长宁区| 津市市| 邹平县| 红河县| 丰台区| 星座| 东乌珠穆沁旗| 巨野县| 固镇县| 东平县|