找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuity, Integration and Fourier Theory; Adriaan C. Zaanen Textbook 1989 Springer-Verlag GmbH Germany, part of Springer Nature 1989 Ext

[復制鏈接]
樓主: 毛發(fā)
11#
發(fā)表于 2025-3-23 10:04:19 | 只看該作者
https://doi.org/10.1007/978-3-319-69886-1riants, one for sums and one for integrals. The original variant for integrals of continuous functions or Riemann integrable functions was extended to measurable functions without additional difficulties.
12#
發(fā)表于 2025-3-23 14:07:05 | 只看該作者
https://doi.org/10.1007/978-3-319-69886-1onotone sequences and on dominated convergence; the discrete parameter . in these theorems will be replaced by a continuous parameter ?. Let first ., be a .-finite measure in the (non-empty) point set ..
13#
發(fā)表于 2025-3-23 21:04:26 | 只看該作者
https://doi.org/10.1007/978-3-642-73885-2Extension; Fourier series; Fourier transform; Hilbert space; differential equation; mathematical physics;
14#
發(fā)表于 2025-3-23 23:38:20 | 只看該作者
978-3-540-50017-9Springer-Verlag GmbH Germany, part of Springer Nature 1989
15#
發(fā)表于 2025-3-24 02:55:05 | 只看該作者
16#
發(fā)表于 2025-3-24 08:46:25 | 只看該作者
Fourier Integral,onotone sequences and on dominated convergence; the discrete parameter . in these theorems will be replaced by a continuous parameter ?. Let first ., be a .-finite measure in the (non-empty) point set ..
17#
發(fā)表于 2025-3-24 11:22:55 | 只看該作者
18#
發(fā)表于 2025-3-24 15:47:22 | 只看該作者
The Space of Continuous Functions,y the set ? of all real numbers. The set ?. is a . with respect to the familiar laws of addition and multiplication by real constants, i.e., if . = (.,…, .), . = (.,…, .) and ? is a real number, then . + . = (.+y.,…,. + .) and ?. (?.., ?x.).
19#
發(fā)表于 2025-3-24 22:33:31 | 只看該作者
20#
發(fā)表于 2025-3-25 03:05:11 | 只看該作者
Fourier Series of Summable Functions,d of c.(.) is also used. The sequence (.?(.) : . = 0, ±1, ±2,…) is then denoted by .?. For any . ∈ .(?,.) there is an analogous notion, although now it is not a sequence of numbers but again a function defined on the whole of ?. Precisely formulated, for . ∈ .(?,.) the . . of . is the function, defined for any . ∈ ? by
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 04:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
法库县| 澄城县| 甘孜县| 上思县| 原平市| 宜春市| 高安市| 隆回县| 广州市| 金坛市| 五华县| 宜州市| 沙湾县| 蓬安县| 长沙县| 苗栗市| 疏附县| 秭归县| 衡阳县| 临高县| 房山区| 社旗县| 江油市| 土默特左旗| 县级市| 商河县| 汶川县| 安阳市| 龙泉市| 饶河县| 巴东县| 鄂伦春自治旗| 五原县| 略阳县| 周口市| 丰台区| 汨罗市| 横山县| 桂东县| 西林县| 新疆|