找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Continuity, Integration and Fourier Theory; Adriaan C. Zaanen Textbook 1989 Springer-Verlag GmbH Germany, part of Springer Nature 1989 Ext

[復制鏈接]
樓主: 毛發(fā)
21#
發(fā)表于 2025-3-25 04:28:50 | 只看該作者
https://doi.org/10.1007/978-3-319-69886-1 near the jump and then steeply going downwards, starts to oscillate before diving down. An explanation of this phenomenon was discovered and explained already earlier by H. Wilbraham (1848), but this was forgotten for a long time.
22#
發(fā)表于 2025-3-25 10:12:43 | 只看該作者
Additional Results, near the jump and then steeply going downwards, starts to oscillate before diving down. An explanation of this phenomenon was discovered and explained already earlier by H. Wilbraham (1848), but this was forgotten for a long time.
23#
發(fā)表于 2025-3-25 14:56:57 | 只看該作者
24#
發(fā)表于 2025-3-25 19:41:38 | 只看該作者
25#
發(fā)表于 2025-3-25 21:30:41 | 只看該作者
https://doi.org/10.1007/978-3-319-69886-1here || ? || denotes the uniform norm in .(.). Equivaiently, we may say that there exists a sequence (. : n = 1,2,…) of polynomials such that ||.–.|| → 0 as . → ∞. Is it possible to denote explicitly a sequence (.) satisfying this condition? The answer is affirmative. For . = [0,1] we may choose for . the . .(.), defined on [0,1] by
26#
發(fā)表于 2025-3-26 03:38:06 | 只看該作者
https://doi.org/10.1007/978-3-319-69886-1d of c.(.) is also used. The sequence (.?(.) : . = 0, ±1, ±2,…) is then denoted by .?. For any . ∈ .(?,.) there is an analogous notion, although now it is not a sequence of numbers but again a function defined on the whole of ?. Precisely formulated, for . ∈ .(?,.) the . . of . is the function, defined for any . ∈ ? by
27#
發(fā)表于 2025-3-26 06:16:12 | 只看該作者
28#
發(fā)表于 2025-3-26 11:18:31 | 只看該作者
Fourier Series of Continuous Functions, (f.) is said to be an . on .. We immediately mention an example. For . = 0, ±1, ±2,…, let .(.) = (2π). on ?. The system (. : . = 0, ±1, ±2,…) is orthonormal on any interval [., . + 2π], i.e., on any interval of length 2π in ?. The proof is immediate by observing that
29#
發(fā)表于 2025-3-26 12:41:17 | 只看該作者
30#
發(fā)表于 2025-3-26 20:03:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 07:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
郁南县| 霍城县| 青海省| 揭东县| 崇仁县| 集贤县| 玉山县| 永仁县| 蓬溪县| 百色市| 龙游县| 鄯善县| 江华| 吉安市| 昌平区| 阜康市| 慈溪市| 白朗县| 尼勒克县| 西充县| 兴业县| 长垣县| 哈尔滨市| 周至县| 土默特右旗| 淳化县| 临西县| 江阴市| 玛纳斯县| 高唐县| 铜梁县| 镇雄县| 静安区| 连平县| 临桂县| 治县。| 华容县| 麻城市| 云阳县| 电白县| 辉县市|