找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision Using Local Binary Patterns; Matti Pietik?inen,Abdenour Hadid,Timo Ahonen Book 2011 Springer-Verlag London Limited 2011 Co

[復(fù)制鏈接]
樓主: dejected
41#
發(fā)表于 2025-3-28 18:02:47 | 只看該作者
Sappho and the Wordsworth Probleml findings which state that facial movements can provide valuable information to face analysis, this chapter investigates the use of spatiotemporal LBP for combining facial appearance (the shape of the face) and motion (the way a person is talking and moving his/her facial features) for face, facial expression and gender recognition from videos.
42#
發(fā)表于 2025-3-28 21:06:41 | 只看該作者
Local Binary Patterns for Still Imageson problems and applications has inspired much new research on different variants. The basic LBP has also some problems that need to be addressed. Therefore, several extensions and modifications of LBP have been proposed to increase its robustness and discriminative power.
43#
發(fā)表于 2025-3-29 00:22:20 | 只看該作者
Description of Interest Regionscriptor and the LBP operator. It performed better than SIFT in image matching experiments especially for image pairs having illumination variations and about equally well in image categorization experiments.
44#
發(fā)表于 2025-3-29 04:58:22 | 只看該作者
45#
發(fā)表于 2025-3-29 10:45:36 | 只看該作者
Local Binary Patterns for Still Imagesltiscale versions are introduced. The use of complementary contrast information is also discussed. The success of LBP methods in various computer vision problems and applications has inspired much new research on different variants. The basic LBP has also some problems that need to be addressed. The
46#
發(fā)表于 2025-3-29 11:40:36 | 只看該作者
47#
發(fā)表于 2025-3-29 17:15:41 | 只看該作者
48#
發(fā)表于 2025-3-29 21:59:00 | 只看該作者
Description of Interest Regionsest region description using center-symmetric local binary patterns (CS-LBP). The CS-LBP descriptor combines the advantages of the well-known SIFT descriptor and the LBP operator. It performed better than SIFT in image matching experiments especially for image pairs having illumination variations an
49#
發(fā)表于 2025-3-30 03:24:30 | 只看該作者
50#
發(fā)表于 2025-3-30 06:26:24 | 只看該作者
Recognition and Segmentation of Dynamic Texturesent recognition results are obtained for different test databases providing state-of-the-art performance. The segmentation method extends the unsupervised segmentation method presented in Chap.?. into spatiotemporal domain. It provides very promising results with less computational complexity than m
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
叶城县| 安徽省| 孝昌县| 石楼县| 龙口市| 雅江县| 澄江县| 汉寿县| 区。| 壤塘县| 申扎县| 获嘉县| 杭锦旗| 思茅市| 闽侯县| 葵青区| 云浮市| 屯门区| 台东市| 浦江县| 甘泉县| 罗山县| 新源县| 平阴县| 邻水| 拜泉县| 五指山市| 宁安市| 三门县| 微山县| 郓城县| 黄浦区| 荣成市| 明溪县| 永安市| 方山县| 静安区| 景谷| 襄垣县| 新巴尔虎右旗| 额济纳旗|