找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Vision Using Local Binary Patterns; Matti Pietik?inen,Abdenour Hadid,Timo Ahonen Book 2011 Springer-Verlag London Limited 2011 Co

[復(fù)制鏈接]
查看: 24178|回復(fù): 50
樓主
發(fā)表于 2025-3-21 17:05:25 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Computer Vision Using Local Binary Patterns
編輯Matti Pietik?inen,Abdenour Hadid,Timo Ahonen
視頻videohttp://file.papertrans.cn/235/234039/234039.mp4
概述Written by pioneers in the topic of Local Binary Patterns.Contains a wealth of illustrations to aid a deeper understanding of the subject.Offers those working with LBPs a single point of reference by
叢書名稱Computational Imaging and Vision
圖書封面Titlebook: Computer Vision Using Local Binary Patterns;  Matti Pietik?inen,Abdenour Hadid,Timo Ahonen Book 2011 Springer-Verlag London Limited 2011 Co
描述.The recent emergence of Local Binary Patterns (LBP) has led to significant progress in applying texture methods to various computer vision problems and applications. The focus of this research has broadened from 2D textures to 3D textures and spatiotemporal (dynamic) textures. Also, where texture was once utilized for applications such as remote sensing, industrial inspection and biomedical image analysis, the introduction of LBP-based approaches have provided outstanding results in problems relating to face and activity analysis, with future scope for face and facial expression recognition, biometrics, visual surveillance and video analysis. .Computer Vision Using Local Binary Patterns. provides a detailed description of the LBP methods and their variants both in spatial and spatiotemporal domains. This comprehensive reference also provides an excellent overview as to how texture methods can be utilized for solving different kinds of computer vision and image analysis problems. Source codes of the basic LBP algorithms, demonstrations, some databases and a comprehensive LBP bibliography can be found from an accompanying web site. .Topics include: local binary patterns and their va
出版日期Book 2011
關(guān)鍵詞Computer Vision; Face Analysis; Image and Video Analysis; Local Binary Pattern Operator; Local Descripto
版次1
doihttps://doi.org/10.1007/978-0-85729-748-8
isbn_softcover978-1-4471-2665-2
isbn_ebook978-0-85729-748-8Series ISSN 1381-6446
issn_series 1381-6446
copyrightSpringer-Verlag London Limited 2011
The information of publication is updating

書目名稱Computer Vision Using Local Binary Patterns影響因子(影響力)




書目名稱Computer Vision Using Local Binary Patterns影響因子(影響力)學(xué)科排名




書目名稱Computer Vision Using Local Binary Patterns網(wǎng)絡(luò)公開度




書目名稱Computer Vision Using Local Binary Patterns網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Computer Vision Using Local Binary Patterns被引頻次




書目名稱Computer Vision Using Local Binary Patterns被引頻次學(xué)科排名




書目名稱Computer Vision Using Local Binary Patterns年度引用




書目名稱Computer Vision Using Local Binary Patterns年度引用學(xué)科排名




書目名稱Computer Vision Using Local Binary Patterns讀者反饋




書目名稱Computer Vision Using Local Binary Patterns讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:45:09 | 只看該作者
Texture Classification and Segmentationts involving LBP descriptors. An unsupervised method for texture segmentation using LBP and contrast (LBP/C) distributions is presented in the second part of the chapter. This method has become very popular, and many variants of it have been proposed, for example for color-texture segmentation and segmentation of remotely sensed images.
板凳
發(fā)表于 2025-3-22 03:07:24 | 只看該作者
Recognition and Segmentation of Dynamic Texturesent recognition results are obtained for different test databases providing state-of-the-art performance. The segmentation method extends the unsupervised segmentation method presented in Chap.?. into spatiotemporal domain. It provides very promising results with less computational complexity than most other methods.
地板
發(fā)表于 2025-3-22 07:24:11 | 只看該作者
Background Subtraction This chapter presents a robust texture-based method for modeling the background and detecting moving objects, obtaining state-of-the-art performance. The method has been successfully used in a multi-object tracking system, for example.
5#
發(fā)表于 2025-3-22 08:52:33 | 只看該作者
LBP in Different Applicationsent image analysis problems and applications around the world. Among the most important areas of application are face analysis, biometrics, biomedical image analysis, industrial inspection and video analysis. This chapter presents a brief introduction to some representative papers from different application areas.
6#
發(fā)表于 2025-3-22 13:47:55 | 只看該作者
7#
發(fā)表于 2025-3-22 17:03:20 | 只看該作者
8#
發(fā)表于 2025-3-23 00:07:41 | 只看該作者
Computing Models for Faint-Galaxy Samplests involving LBP descriptors. An unsupervised method for texture segmentation using LBP and contrast (LBP/C) distributions is presented in the second part of the chapter. This method has become very popular, and many variants of it have been proposed, for example for color-texture segmentation and segmentation of remotely sensed images.
9#
發(fā)表于 2025-3-23 03:38:50 | 只看該作者
10#
發(fā)表于 2025-3-23 06:32:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 04:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延吉市| 通州区| 广州市| 呼玛县| 葵青区| 云林县| 凌海市| 武清区| 萨迦县| 深泽县| 远安县| 萨嘎县| 珠海市| 封开县| 乡城县| 江源县| 丰顺县| 延吉市| 东海县| 仙居县| 平度市| 广德县| 固镇县| 托克托县| 长沙县| 平度市| 徐水县| 秦皇岛市| 台安县| 滦平县| 视频| 炎陵县| 镇沅| 改则县| 南阳市| 高阳县| 呼和浩特市| 广水市| 海兴县| 通辽市| 雷州市|