找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 8th Workshop, CSL ‘9 Leszek Pacholski,Jerzy Tiuryn Conference proceedings 1995 Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: DIGN
41#
發(fā)表于 2025-3-28 17:37:09 | 只看該作者
Subtyping with singleton types,pecification {.} which is met uniquely by .. Singletons integrate abbreviational definitions into a type system: the hypothesis .: {. asserts .. The addition of singleton types is a non-conservative extension of familiar subtyping theories. In our system, more terms are typable and previously typable terms have more (non-dependent) types.
42#
發(fā)表于 2025-3-28 18:49:55 | 只看該作者
,Convergence and 0–1 laws for ,, under arbitrary measures,itrary measure. We use this theorem to obtain some results about the nonexistence of .. convergence laws for particular classes of structures. We also disprove a conjecture of Tyszkiewicz [16] relating the existence of .. and MSO 0–1 laws on classes of structures with arbitrary measures.
43#
發(fā)表于 2025-3-29 00:59:45 | 只看該作者
44#
發(fā)表于 2025-3-29 05:25:36 | 只看該作者
0302-9743 cal systems. Together, these papers give a representative snapshot of the area of logical foundations of computer science.978-3-540-60017-6978-3-540-49404-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
45#
發(fā)表于 2025-3-29 08:56:45 | 只看該作者
46#
發(fā)表于 2025-3-29 11:54:56 | 只看該作者
https://doi.org/10.1007/978-3-319-58341-9and over equationally presented constraint domains as special cases. We give a categorical treatment of the fix-point semantics of Kowalski and van Emden, which establishes completeness in a very general setting.
47#
發(fā)表于 2025-3-29 16:23:08 | 只看該作者
48#
發(fā)表于 2025-3-29 20:26:37 | 只看該作者
Logic programming in Tau Categories,and over equationally presented constraint domains as special cases. We give a categorical treatment of the fix-point semantics of Kowalski and van Emden, which establishes completeness in a very general setting.
49#
發(fā)表于 2025-3-30 02:35:03 | 只看該作者
50#
發(fā)表于 2025-3-30 06:12:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 01:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青河县| 公主岭市| 西丰县| 德昌县| 福海县| 囊谦县| 尉犁县| 饶平县| 正宁县| 伊川县| 太康县| 石台县| 财经| 石门县| 山阳县| 望江县| 华阴市| 马龙县| 晋宁县| 科技| 文山县| 教育| 汝南县| 二连浩特市| 大石桥市| 阳江市| 伊吾县| 梅州市| 陇川县| 永宁县| 东兴市| 泸州市| 康马县| 遂平县| 固始县| 马龙县| 万全县| 平顺县| 巢湖市| 宝坻区| 司法|