找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Computer Science Logic; 8th Workshop, CSL ‘9 Leszek Pacholski,Jerzy Tiuryn Conference proceedings 1995 Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: DIGN
21#
發(fā)表于 2025-3-25 05:21:55 | 只看該作者
22#
發(fā)表于 2025-3-25 09:42:13 | 只看該作者
Logics for context-free languages,th the class of those sets of strings which can be defined by sentences of the form ? ., where . is first order, . is a binary predicate symbol, and the range of the second order quantifier is restricted to the class of matchings. Several variations and extensions are discussed.
23#
發(fā)表于 2025-3-25 13:13:42 | 只看該作者
Is first order contained in an initial segment of PTIME?,ls of this signature are all in an initial segment of P is shown to be related to other intriguing open problems in complexity theory and logic, like P=P...The second part of the paper strengthens the result of Ph. Kolaitis of logical definability of unambiguous computations.
24#
發(fā)表于 2025-3-25 17:28:46 | 只看該作者
Computer Science Logic978-3-540-49404-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
25#
發(fā)表于 2025-3-25 22:08:19 | 只看該作者
26#
發(fā)表于 2025-3-26 03:35:26 | 只看該作者
The Carolingian Debate over Sacred Spaceth the class of those sets of strings which can be defined by sentences of the form ? ., where . is first order, . is a binary predicate symbol, and the range of the second order quantifier is restricted to the class of matchings. Several variations and extensions are discussed.
27#
發(fā)表于 2025-3-26 06:03:57 | 只看該作者
28#
發(fā)表于 2025-3-26 12:23:18 | 只看該作者
29#
發(fā)表于 2025-3-26 14:47:49 | 只看該作者
Monadic second-order logic and linear orderings of finite structures,We consider graphs in which it is possible to specify linear orderings of the sets of vertices, in uniform ways, by MS (i.e., Monadic Second-order) formulas. We also consider classes of graphs ? such that for every L.?, L is recognizable iff it is MS-definable. Our results concern in particular dependency graphs of partially commutative words.
30#
發(fā)表于 2025-3-26 20:31:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 01:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴隆县| 临城县| 奉节县| 库尔勒市| 当涂县| 靖西县| 通山县| 绍兴市| 疏附县| 株洲县| 北安市| 库车县| 北海市| 临漳县| 临武县| 鸡泽县| 永春县| 赫章县| 藁城市| 湖南省| 湘潭县| 镇康县| 吉林市| 长岛县| 隆昌县| 苗栗县| 长子县| 岱山县| 会理县| 阿坝| 洮南市| 安丘市| 双鸭山市| 广南县| 清镇市| 万全县| 晋州市| 白水县| 白朗县| 曲麻莱县| 安平县|