找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity of Lattice Problems; A Cryptographic Pers Daniele Micciancio,Shafi Goldwasser Book 2002 Springer Science+Business Media New York

[復(fù)制鏈接]
樓主: 信賴
31#
發(fā)表于 2025-3-26 23:51:49 | 只看該作者
32#
發(fā)表于 2025-3-27 04:58:29 | 只看該作者
Book 2002relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cr
33#
發(fā)表于 2025-3-27 07:26:39 | 只看該作者
0893-3405 n computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cr978-1-4613-5293-8978-1-4615-0897-7Series ISSN 0893-3405
34#
發(fā)表于 2025-3-27 10:42:27 | 只看該作者
Approximation Algorithms,l time algorithms to find approximately shortest nonzero vectors in a lattice, or lattice vectors approximately closest to a given target point. The approximation factor achieved is exponential in the rank of the lattice. In Section 1 we start with an algorithm to solve SVP in dimension 2. For the s
35#
發(fā)表于 2025-3-27 17:26:27 | 只看該作者
36#
發(fā)表于 2025-3-27 17:46:05 | 只看該作者
Shortest Vector Problem,to find the shortest nonzero vector in the lattice generated by . . In Chapter 3 we have already studied another important algorithmic problem on lattices: the closest vector problem (CVP). In CVP, in addition to the lattice basis ., one is given a target vector ., and the goal is to find the lattic
37#
發(fā)表于 2025-3-27 22:31:36 | 只看該作者
38#
發(fā)表于 2025-3-28 02:44:22 | 只看該作者
39#
發(fā)表于 2025-3-28 09:10:48 | 只看該作者
40#
發(fā)表于 2025-3-28 13:18:54 | 只看該作者
Cryptographic Functions,n cryptography is that of secret communication: two parties want to communicate with each other, and keep the conversation private, i.e., no one, other than the two legitimate parties, should be able to get any information about the messages being exchanged. This secrecy goal can be achieved if the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
徐州市| 台中市| 芜湖县| 竹山县| 鸡东县| 雅江县| 麻栗坡县| 柯坪县| 莱州市| 石景山区| 永吉县| 吴桥县| 格尔木市| 贵州省| 江阴市| 临邑县| 尚义县| 酒泉市| 尼勒克县| 胶南市| 中江县| 格尔木市| 临邑县| 常宁市| 察隅县| 广宗县| 岱山县| 丹江口市| 家居| 清苑县| 绥芬河市| 遂宁市| 崇州市| 仁布县| 思南县| 克什克腾旗| 治县。| 武城县| 桑植县| 桃江县| 休宁县|