找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity of Lattice Problems; A Cryptographic Pers Daniele Micciancio,Shafi Goldwasser Book 2002 Springer Science+Business Media New York

[復(fù)制鏈接]
樓主: 信賴
11#
發(fā)表于 2025-3-23 11:59:39 | 只看該作者
Statistical Continuum Mechanicsto find the shortest nonzero vector in the lattice generated by . . In Chapter 3 we have already studied another important algorithmic problem on lattices: the closest vector problem (CVP). In CVP, in addition to the lattice basis ., one is given a target vector ., and the goal is to find the lattic
12#
發(fā)表于 2025-3-23 13:51:45 | 只看該作者
Philip Kokic,Jens Breckling,Oliver Lübkeen that the minimum distance between lattice points (or, equivalently, the length of the shortest non-zero vector in the lattice) is at least λ? Clearly the answer depends on the ratio λ/. only, as both the lattice and the sphere can be scaled up or down preserving λ/.. If we drop the requirement th
13#
發(fā)表于 2025-3-23 20:55:39 | 只看該作者
14#
發(fā)表于 2025-3-24 00:42:10 | 只看該作者
Philip Kokic,Jens Breckling,Oliver Lübkemplexity point of view. In fact, the algorithms presented in Chapter 2 to approximately solve SVP and CVP do somehow more than just finding an approximately shortest lattice vector, or a lattice vector approximately closest to a given target. For example, the LLL algorithm on input a lattice basis .
15#
發(fā)表于 2025-3-24 05:22:54 | 只看該作者
16#
發(fā)表于 2025-3-24 06:45:17 | 只看該作者
17#
發(fā)表于 2025-3-24 13:33:51 | 只看該作者
Statistical Continuum Mechanicsiew, and, in particular we investigate the hardness of the closest vector problem. We first consider the problem of solving CVP exactly, and prove that this problem is hard for NP. Therefore no efficient algorithm to solve CVP exists, unless P equals NP.
18#
發(fā)表于 2025-3-24 17:22:44 | 只看該作者
19#
發(fā)表于 2025-3-24 20:14:35 | 只看該作者
20#
發(fā)表于 2025-3-25 00:13:29 | 只看該作者
Low-Degree Hypergraphs,ces or matrices. A . is a pair (., .), where . is a finite set of . and . is a collection of subsets of ., called .. If all the elements of . have the same size, then we say that (., .) is ., and the common size of all hyperedges is called the . of the hypergraph.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嵊州市| 韩城市| 冷水江市| 慈利县| 潜江市| 长沙市| 绍兴县| 句容市| 瑞安市| 浙江省| 八宿县| 常德市| 额济纳旗| 泗洪县| 大渡口区| 清远市| 樟树市| 林周县| 太谷县| 安顺市| 宜兴市| 沙洋县| 恭城| 方城县| 保亭| 井冈山市| 瓮安县| 清苑县| 吉林市| 民丰县| 高碑店市| 石楼县| 青浦区| 乌审旗| 永登县| 澜沧| 宕昌县| 富平县| 石狮市| 垦利县| 澜沧|