找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Tori; Christina Birkenhake,Herbert Lange Book 1999 Springer Science+Business Media New York 1999 Abelian variety.Algebra.Cohomolog

[復制鏈接]
樓主: 聯(lián)系
11#
發(fā)表于 2025-3-23 10:52:03 | 只看該作者
Embeddings into Projective Space,the Riemann-Roch Theorem of [CAV], Chapter 3. It goes back to a trick of Wirtinger [Wi]: A suitable change of the complex structure of . defines in a canonical way a line bundle . which is positive definite and satisfies .(.) = .(.). As we learned from R. R. Simha, this approach appears already in t
12#
發(fā)表于 2025-3-23 14:30:08 | 只看該作者
Families of Complex Tori,an anti-involution ’ on End.(.). The skew fields . of finite type over ? with anti-involution ′ were classified by Albert. In this chapter we work out which of these algebras can be realized as endomorphism algebras of nondegenerate complex tori.
13#
發(fā)表于 2025-3-23 21:12:55 | 只看該作者
14#
發(fā)表于 2025-3-24 01:19:47 | 只看該作者
Book 1999A complex torus is a connected compact complex Lie group. Any complex 9 9 torus is of the form X =
15#
發(fā)表于 2025-3-24 05:10:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:19:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:07:12 | 只看該作者
18#
發(fā)表于 2025-3-24 15:08:22 | 只看該作者
Complex Tori,. = ?./ Λ with Λ a lattice in ?.. A complex torus is a complex manifold of dimension .. It inherits the structure of a complex Lie group from the vector space ?.. In this chapter we study some properties of complex tori without any additional structure.
19#
發(fā)表于 2025-3-24 20:07:00 | 只看該作者
Intermediate Jacobians, give their definitions, deduce some of their properties and see how they are related. We omit some of their most important aspects, for example the Abel-Jacobi map, which reflects the geometry of the manifold ., since here we are more interested in the complex tori.
20#
發(fā)表于 2025-3-25 00:21:22 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 05:14
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
双桥区| 离岛区| 云梦县| 河源市| 荣昌县| 读书| 黎平县| 漯河市| 全州县| 罗山县| 永昌县| 晋江市| 股票| 安丘市| 新闻| 鄂伦春自治旗| 泽州县| 英德市| 格尔木市| 台前县| 甘德县| 开化县| 喜德县| 石楼县| 明溪县| 兴安县| 武乡县| 蒙阴县| 天柱县| 马公市| 和林格尔县| 偃师市| 武隆县| 玛多县| 理塘县| 鸡东县| 乐陵市| 茶陵县| 新安县| 通化县| 沛县|