找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Tori; Christina Birkenhake,Herbert Lange Book 1999 Springer Science+Business Media New York 1999 Abelian variety.Algebra.Cohomolog

[復(fù)制鏈接]
查看: 14036|回復(fù): 41
樓主
發(fā)表于 2025-3-21 19:35:01 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Tori
編輯Christina Birkenhake,Herbert Lange
視頻videohttp://file.papertrans.cn/232/231600/231600.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Complex Tori;  Christina Birkenhake,Herbert Lange Book 1999 Springer Science+Business Media New York 1999 Abelian variety.Algebra.Cohomolog
描述A complex torus is a connected compact complex Lie group. Any complex 9 9 torus is of the form X =
出版日期Book 1999
關(guān)鍵詞Abelian variety; Algebra; Cohomology; algebraic geometry; complex analysis; homomorphism; manifold; moduli
版次1
doihttps://doi.org/10.1007/978-1-4612-1566-0
isbn_softcover978-1-4612-7195-6
isbn_ebook978-1-4612-1566-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1999
The information of publication is updating

書目名稱Complex Tori影響因子(影響力)




書目名稱Complex Tori影響因子(影響力)學(xué)科排名




書目名稱Complex Tori網(wǎng)絡(luò)公開度




書目名稱Complex Tori網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Complex Tori被引頻次




書目名稱Complex Tori被引頻次學(xué)科排名




書目名稱Complex Tori年度引用




書目名稱Complex Tori年度引用學(xué)科排名




書目名稱Complex Tori讀者反饋




書目名稱Complex Tori讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:16:17 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:34:01 | 只看該作者
Embeddings into Projective Space,not admit a projective embedding. We will show in this chapter that if (.) is a nondegenerate complex torus of dimension . and index ., then . admits a differentiable embedding into projective space which is holomorphic in . — . variables and antiholomorphic in . variables. For this choose a line bu
地板
發(fā)表于 2025-3-22 07:35:20 | 只看該作者
Intermediate Jacobians, give their definitions, deduce some of their properties and see how they are related. We omit some of their most important aspects, for example the Abel-Jacobi map, which reflects the geometry of the manifold ., since here we are more interested in the complex tori.
5#
發(fā)表于 2025-3-22 12:40:26 | 只看該作者
Families of Complex Tori,Section 1.9) every skew field of finite dimension over ? occurs as the endomorphism algebra of a complex torus. For nondegenerate complex tori the situation is completely different: The existence of a polarization . of index . on . gives strong restrictions for End.(.): The hermitian form . induces
6#
發(fā)表于 2025-3-22 13:44:40 | 只看該作者
The Parameter Spaces of Complex Tori with Endomorphism Structure,cial case of abelian varieties, . is a hermitian symmetric space. To be more precise, there are three series of irreducible hermitian symmetric spaces of the noncompact type CI (the Siegel upper half spaces), AIII, and DIII such that any . is a product of members of these (see [Sh] or [CAV], Chapter
7#
發(fā)表于 2025-3-22 19:29:13 | 只看該作者
8#
發(fā)表于 2025-3-22 21:49:00 | 只看該作者
9#
發(fā)表于 2025-3-23 05:00:03 | 只看該作者
10#
發(fā)表于 2025-3-23 07:20:27 | 只看該作者
Nondegenerate Complex Tori,uch a hermitian form a .. (Note that in [G] . is called a .-convex polarization). If . is a polarization of index . on a complex torus ., we call the pair (., .) a .. In view of the definition of a pseudo-Riemannian manifold [He] one might be tempted to call (., .) a pseudo-abelian or semi-abelian v
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临湘市| 阿拉善右旗| 合阳县| 塔河县| 山阴县| 康定县| 秦安县| 山东省| 搜索| 深泽县| 平乡县| 台北市| 云安县| 六盘水市| 湛江市| 交口县| 江口县| 大石桥市| 黔东| 新晃| 招远市| 门源| 阳信县| 北京市| 乌审旗| 江源县| 宁津县| 弥渡县| 泊头市| 吉安市| 固阳县| 栾城县| 洪湖市| 达孜县| 东莞市| 陇川县| 九龙县| 潮州市| 芦山县| 寿阳县| 齐河县|