找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Geometry of Slant Submanifolds; Bang-Yen Chen,Mohammad Hasan Shahid,Falleh Al-Sola Book 2022 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Tamoxifen
31#
發(fā)表于 2025-3-26 22:46:43 | 只看該作者
Forschungen zur Europ?ischen Integrationemi-slant submanifolds. Cabrerizo et al. studied slant, semi-slant, hemi-slant, and bi-slant submanifold in contact geometry [., .]. Later, B. Sahin and M. Atceken studied slant, semi-slant, and bi-slant submanifolds of locally Riemannian product manifolds (for instance, see [., .]).
32#
發(fā)表于 2025-3-27 04:20:05 | 只看該作者
33#
發(fā)表于 2025-3-27 05:22:58 | 只看該作者
34#
發(fā)表于 2025-3-27 12:38:02 | 只看該作者
Slant Submanifolds and Their Warped Products in Locally Product Riemannian Manifolds,emi-slant submanifolds. Cabrerizo et al. studied slant, semi-slant, hemi-slant, and bi-slant submanifold in contact geometry [., .]. Later, B. Sahin and M. Atceken studied slant, semi-slant, and bi-slant submanifolds of locally Riemannian product manifolds (for instance, see [., .]).
35#
發(fā)表于 2025-3-27 16:35:53 | 只看該作者
Slant Submanifolds of Quaternion Kaehler and HyperKaehler Manifolds,sional vector bundle . consisting of tensors of type (1,1) with local basis of almost Hermitian structures . such that (a) . (b) . where . is the identity tensor of type (1,1) on .. (c) . for all vector fields . tangent to ., where . denotes the Riemannian connection in . and . are 1-forms defined locally on . such that
36#
發(fā)表于 2025-3-27 21:28:40 | 只看該作者
Geometry of Pointwise Slant Immersions in Almost Hermitian Manifolds,rther investigated by Cabrerizo et al. in 2000. The theory of slant submanifolds became a very rich area of research for geometers. Slant submanifolds have been studied in different kinds of structures of almost Hermitian manifolds by several geometers.
37#
發(fā)表于 2025-3-27 23:08:37 | 只看該作者
38#
發(fā)表于 2025-3-28 02:56:18 | 只看該作者
39#
發(fā)表于 2025-3-28 07:39:37 | 只看該作者
40#
發(fā)表于 2025-3-28 12:13:15 | 只看該作者
Hemi-slant and Semi-slant Submanifolds in Locally Conformal Kaehler Manifolds,results for hemi-slant submanifolds. In Sect.?2, we prove new results for warped product hemi-slant submanifolds. In Sect.?3, we provide a survey of recent results for semi-slant submanifolds. In the last section, we prove new results and give some remarkable recent results for warped product semi-s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澎湖县| 永川市| 定陶县| 黄冈市| 鹤岗市| 清涧县| 南皮县| 黄大仙区| 定西市| 雷山县| 锡林浩特市| 宁晋县| 宜阳县| 昭苏县| 宁德市| 定西市| 碌曲县| 和田市| 文水县| 宜城市| 武汉市| 永福县| 尼木县| 出国| 手游| 湖南省| 西充县| 根河市| 珲春市| 胶南市| 年辖:市辖区| 班玛县| 赞皇县| 奎屯市| 霍城县| 龙里县| 祁东县| 福建省| 漳州市| 长岭县| 斗六市|