找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Geometry of Slant Submanifolds; Bang-Yen Chen,Mohammad Hasan Shahid,Falleh Al-Sola Book 2022 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Tamoxifen
11#
發(fā)表于 2025-3-23 11:00:47 | 只看該作者
,An Overview of Recent Developments in?Slant Submanifolds,Slant submanifolds were defined in the nineties by B.-Y. Chen and the corresponding theory has had an increasing development.
12#
發(fā)表于 2025-3-23 17:34:24 | 只看該作者
Slant Geometry of Warped Products in Kaehler and Nearly Kaehler Manifolds,Among submanifolds of an almost Hermitian manifold . endowed with a Riemannian metric . and a compatible almost complex structure ., a . . of . is characterized.
13#
發(fā)表于 2025-3-23 21:09:27 | 只看該作者
14#
發(fā)表于 2025-3-24 00:54:23 | 只看該作者
Slant Submanifolds of the Nearly Kaehler 6-Sphere,By a result of Butruille, [.], the nearly Kaehler 6-sphere is one of 4 homogeneous 6-dimensional strict nearly Kaehler manifolds. Its almost complex structure is introduced by considering . as the imaginary Cayley numbers.
15#
發(fā)表于 2025-3-24 03:05:10 | 只看該作者
Slant Submanifolds of Para Hermitian Manifolds,In [.], Chen introduced slant submanifolds of an almost Hermitian manifold, as those submanifolds for which the angle between . and the tangent space is constant, for any tangent vector field .. These submanifolds play an intermediate role between complex submanifolds and totally real ones.
16#
發(fā)表于 2025-3-24 07:24:02 | 只看該作者
17#
發(fā)表于 2025-3-24 14:46:15 | 只看該作者
https://doi.org/10.1007/978-981-16-0021-0differential geometry; submanifolds; slant submanifolds; Kaehler 6-Sphere; Semi-Riemannian geometry; metr
18#
發(fā)表于 2025-3-24 16:46:42 | 只看該作者
978-981-16-0023-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
19#
發(fā)表于 2025-3-24 19:12:29 | 只看該作者
https://doi.org/10.1007/978-3-322-95147-2ent bundle of a submanifold with respect to the action of the almost complex structure . of the ambient manifold, there are three important classes of submanifolds, namely complex submanifolds, totally real submanifolds, and slant submanifolds.
20#
發(fā)表于 2025-3-25 01:00:23 | 只看該作者
Staatensouver?nit?t und ius cogensresults for hemi-slant submanifolds. In Sect.?2, we prove new results for warped product hemi-slant submanifolds. In Sect.?3, we provide a survey of recent results for semi-slant submanifolds. In the last section, we prove new results and give some remarkable recent results for warped product semi-s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
且末县| 巢湖市| 溆浦县| 杭锦后旗| 赣榆县| 天峨县| 临清市| 惠安县| 贡嘎县| 塔河县| 永靖县| 湖州市| 福清市| 张家口市| 邵武市| 金乡县| 榆中县| 永登县| 枣阳市| 德化县| 基隆市| 石河子市| 宝坻区| 阿合奇县| 通河县| 西乌珠穆沁旗| 井陉县| 白河县| 海口市| 项城市| 德清县| 忻城县| 泰顺县| 西和县| 兖州市| 疏勒县| 腾冲县| 临汾市| 儋州市| 都兰县| 丽水市|