找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Semigroups; P. A. Grillet Book 2001 Springer Science+Business Media Dordrecht 2001 DEX.Finite.Lattice.cohomology.commutative p

[復(fù)制鏈接]
樓主: 忠誠
41#
發(fā)表于 2025-3-28 15:22:06 | 只看該作者
Lebensphasen: Kindheit, Jugend, Alterral features including archimedean components, subdirect decompositions, .-classes, and extended Schützenberger functors. Its relationship to extension groups is less obvious and is shown in Section XIII.2. A similar construction was obtained by the author for finite congruences [1996C], then generalized to complete group-free congruences [2001C].
42#
發(fā)表于 2025-3-28 20:59:35 | 只看該作者
43#
發(fā)表于 2025-3-29 01:30:44 | 只看該作者
44#
發(fā)表于 2025-3-29 06:30:24 | 只看該作者
45#
發(fā)表于 2025-3-29 07:34:06 | 只看該作者
46#
發(fā)表于 2025-3-29 12:11:02 | 只看該作者
Other Resultss which are not covered by other chapters. As noted in the Preface, some subjects have been omitted: partially ordered semigroups; varieties and pseudovarieties; factorization theory; and semigroup rings.
47#
發(fā)表于 2025-3-29 19:37:36 | 只看該作者
Nilsemigroups]; a shorter account is given in Grillet [1995]. Unlike previous constructions for these semigroups, this is a global construction with a very geometric character, in which nilmonoids are obtained as quotient of free commutative monoids by suitable congruences. It accounts well for various structura
48#
發(fā)表于 2025-3-29 19:59:23 | 只看該作者
Group-Free Semigroupsare a particular case. This construction bypasses the difficulties, noted earlier, in reassembling archimedean components and Ponizovsky factors, and accounts well for the main structural features of these semigroups (idempotents, ?-classes, archimedean components, and Ponizovsky factors); its relat
49#
發(fā)表于 2025-3-30 01:46:39 | 只看該作者
Subcomplete Semigroupss, subelementary semigroups, and finitely generated semigroups are particular cases. In particular, this constructs all congruences on finitely generated free commutative monoids. The construction uses Ponizovsky families to generalize the results in Chapter X and relates smoothly to related structu
50#
發(fā)表于 2025-3-30 07:00:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瑞昌市| 望江县| 泰安市| 凤台县| 墨脱县| 永康市| 诸暨市| 黔南| 滦平县| 惠东县| 华蓥市| 慈溪市| 沿河| 郓城县| 武安市| 额敏县| 祁东县| 宜黄县| 临高县| 彭阳县| 鄄城县| 罗甸县| 通州市| 岑巩县| 张家港市| 拜城县| 漯河市| 阿瓦提县| 乳山市| 聂荣县| 句容市| 绥宁县| 亚东县| 河西区| 五原县| 南安市| 湾仔区| 电白县| 岗巴县| 稻城县| 洛川县|