找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Semigroups; P. A. Grillet Book 2001 Springer Science+Business Media Dordrecht 2001 DEX.Finite.Lattice.cohomology.commutative p

[復(fù)制鏈接]
樓主: 忠誠
11#
發(fā)表于 2025-3-23 10:53:17 | 只看該作者
Ver?nderungen wagen: Jetzt geht es los!Group coextensions were developed independently by Grillet [1974] and Leech [1975] for semigroups in general. They yield precise constructions of complete commutative semigroups in terms of abelian groups and group-free semigroups. This leads to the semigroup cohomology which is studied in the last chapters of this book.
12#
發(fā)表于 2025-3-23 16:58:55 | 只看該作者
Partizipation von Jugendlichen,Commutative semigroup cohomology assigns abelian groups ..(., G)to a commutative semigroup . and an abelian group valued functor G on ..
13#
發(fā)表于 2025-3-23 20:04:06 | 只看該作者
,Entwicklung für die Soziale Arbeit,Like other cohomology theories, commutative semigroup cohomology gives rise to the following problem:
14#
發(fā)表于 2025-3-24 00:45:47 | 只看該作者
Elementary PropertiesThis chapter contains basic first properties of commutative semigroups: idempotents, subsemigroups, homomorphisms and congruences, ideals, ideal extensions, ?-classes and Schützenberger groups, free commutative semigroups, presentations. It is written for readers who are not familiar with semigroups and can therefore expect a few surprises.
15#
發(fā)表于 2025-3-24 06:26:29 | 只看該作者
Cancellative SemigroupsOne of the oldest results in semigroup theory embeds cancellative commutative semigroups into abelian groups, by a construction which also completes ? into ? and embeds integral domains into fields.
16#
發(fā)表于 2025-3-24 08:23:50 | 只看該作者
Group CoextensionsGroup coextensions were developed independently by Grillet [1974] and Leech [1975] for semigroups in general. They yield precise constructions of complete commutative semigroups in terms of abelian groups and group-free semigroups. This leads to the semigroup cohomology which is studied in the last chapters of this book.
17#
發(fā)表于 2025-3-24 10:54:46 | 只看該作者
18#
發(fā)表于 2025-3-24 17:16:00 | 只看該作者
Semigroups with Zero CohomologyLike other cohomology theories, commutative semigroup cohomology gives rise to the following problem:
19#
發(fā)表于 2025-3-24 19:02:46 | 只看該作者
https://doi.org/10.1007/978-1-4757-3389-1DEX; Finite; Lattice; cohomology; commutative property; congruence; group; homology; semigroup; set
20#
發(fā)表于 2025-3-24 23:26:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清镇市| 安溪县| 宁海县| 阿坝| 静宁县| 高雄县| 西平县| 延寿县| 巢湖市| 青浦区| 贡觉县| 新蔡县| 灵寿县| 元谋县| 正阳县| 石楼县| 长海县| 应城市| 辽宁省| 丰城市| 元朗区| 浦东新区| 景洪市| 磐安县| 修文县| 米脂县| 华容县| 彰武县| 鄂州市| 克拉玛依市| 黑水县| 通州市| 普陀区| 厦门市| 南阳市| 离岛区| 依安县| 即墨市| 循化| 南康市| 汝南县|