找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus I; Brian Knight,Roger Adams Book 1975 Springer Science+Business Media New York 1975 curve sketching.differential equation.integra

[復(fù)制鏈接]
樓主: 切口
41#
發(fā)表于 2025-3-28 17:32:22 | 只看該作者
42#
發(fā)表于 2025-3-28 19:39:58 | 只看該作者
Current Perspectives on Imaging LanguageThe student is probably already familiar with the result that the sum of the infinite geometric progression: 1 + . + .. + .. + ... + .. + ... is equal to 1/(1 — x), as long as the common ratio . is numerically less than 1. We may thus write:
43#
發(fā)表于 2025-3-29 00:48:28 | 只看該作者
44#
發(fā)表于 2025-3-29 04:44:19 | 只看該作者
45#
發(fā)表于 2025-3-29 10:09:19 | 只看該作者
46#
發(fā)表于 2025-3-29 12:00:22 | 只看該作者
The Exponential and Related Functions,Consider the following expression for the number ..:
47#
發(fā)表于 2025-3-29 18:11:35 | 只看該作者
Inverse Functions,This function is written as sin.. and may be interpreted by:
48#
發(fā)表于 2025-3-29 22:14:40 | 只看該作者
49#
發(fā)表于 2025-3-30 00:40:44 | 只看該作者
Maxima and Minima,In the graph of the function .(.) shown in figure 7.1, there are three points at which the gradient of the tangent becomes zero—points ., and C. These points are known as ., and to find them we must solve the equation: .i.e. find the values of . for which the gradient of the curve is zero.
50#
發(fā)表于 2025-3-30 04:56:20 | 只看該作者
Expansion in Series,The student is probably already familiar with the result that the sum of the infinite geometric progression: 1 + . + .. + .. + ... + .. + ... is equal to 1/(1 — x), as long as the common ratio . is numerically less than 1. We may thus write:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绵阳市| 密云县| 昌平区| 马鞍山市| 澳门| 黎城县| 阿鲁科尔沁旗| 东安县| 澄迈县| 贺兰县| 红桥区| 天峨县| 林州市| 乌海市| 筠连县| 库伦旗| 嘉鱼县| 噶尔县| 海门市| 达州市| 墨江| 民县| 安龙县| 马边| 始兴县| 基隆市| 桂东县| 会宁县| 兴宁市| 济源市| 绵竹市| 嘉峪关市| 玛曲县| 黔西县| 吉隆县| 修文县| 阿图什市| 茌平县| 十堰市| 绥中县| 抚州市|