找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Calculus I; Brian Knight,Roger Adams Book 1975 Springer Science+Business Media New York 1975 curve sketching.differential equation.integra

[復(fù)制鏈接]
樓主: 切口
11#
發(fā)表于 2025-3-23 13:21:44 | 只看該作者
12#
發(fā)表于 2025-3-23 17:33:44 | 只看該作者
Curve Sketching,erations which may give us a very good idea of the general form of a graph, without our having to plot it point by point. We enumerate below some of the more important of these features to look for in an equation, and illustrate in the examples how the graph may be built up from them. Not all of the
13#
發(fā)表于 2025-3-23 20:04:43 | 只看該作者
,Newton’s Method, equations:.have roots which we may estimate, by graphing the functions and finding where the graphs cut the .-axis, but which we cannot find exactly. In these cases a numerical procedure known as Newton’s method allows us to use a value .. which is an approximate root of the equation:.in order to o
14#
發(fā)表于 2025-3-23 23:13:19 | 只看該作者
15#
發(fā)表于 2025-3-24 05:47:48 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:46 | 只看該作者
17#
發(fā)表于 2025-3-24 13:03:27 | 只看該作者
Substitution in Integrals,e. In fact the rule given in Chapter 12 is a special case of a more general rule for substituting in integrals. In the method of substitution, we try to reduce a given integral to one of the standard types by picking out a likely expression in . which we call .(.), and then expressing the whole inte
18#
發(fā)表于 2025-3-24 15:32:07 | 只看該作者
Book 1975ctions A set is a collection of distinct objects. The objects be- longing to a set are the elements (or members) of the set. Although the definition of a set given here refers to objects, we shall in fact take objects to be numbers throughout this book, i.e. we are concerned with sets of numbers. Il
19#
發(fā)表于 2025-3-24 20:25:47 | 只看該作者
20#
發(fā)表于 2025-3-24 23:54:24 | 只看該作者
http://image.papertrans.cn/c/image/220847.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开原市| 新乡市| 柘荣县| 衡阳县| 鄢陵县| 丽江市| 嘉荫县| 岑巩县| 杂多县| 丹凤县| 从江县| 竹山县| 都江堰市| 上栗县| 龙陵县| 通山县| 湖南省| 芜湖县| 新建县| 德令哈市| 嘉禾县| 邢台市| 大关县| 礼泉县| 四川省| 绿春县| 姚安县| 平原县| 临汾市| 健康| 诸城市| 涪陵区| 彭阳县| 婺源县| 沐川县| 江阴市| 宁陕县| 马公市| 郁南县| 扶绥县| 太保市|